Skip to main content

OpenGL Mathematics library for Python

Project description

PyGLM

OpenGL Mathematics (GLM) library for Python

GLSL + Optional features + Python = PyGLM
A mathematics library for graphics programming.

PyGLM is a Python extension written in C++.
By using GLM by G-Truc under the hood, it manages to bring glm's features to Python.  
Some features are unsupported (such as most unstable extensions).
If you encounter any issues or want to request a feature, please create an issue on the issue tracker.

For a complete reference of the types and functions, please take a look at the wiki.

Tiny Documentation

Why PyGLM?

Besides the obvious - being mostly compatible with GLM - PyGLM offers a variety of features for vector and matrix manipulation.
It has a lot of possible use cases, including 3D-Graphics (OpenGL, DirectX, ...), Physics and more.

At the same time, it has great performance, usually being a lot faster than numpy! (see end of page)
(depending on the individual function)

Installation

PyGLM supports Windows, Linux, MacOS and other operating systems.

It can be installed from the PyPI using pip:

pip install pyglm

And finally imported and used:

from pyglm import glm

Changed in version 2.8
When using PyGLM version 2.7.3 or earlier, use

try:
    from pyglm import glm
except ImportError:
    import glm

Attention: Using import glm will be deprecated in PyGLM 3.0.

Using PyGLM

PyGLM's syntax is very similar to the original GLM's syntax.
The module glm contains all of PyGLM's types and functions.
Typing stubs by @esoma are available in the glm_typing module.

For more information, take a look at the wiki.

License requirements

Please make sure to include COPYING in your project when you use PyGLM!
(this is especially relevant for binary distributions, e.g. *.exe)

You can do so by copying the COPYING file (or it's contents) to your project.

Differences to glm

Instead of using double colons (::) for namespaces, periods (.) are used, so
glm::vec2 becomes glm.vec2.

PyGLM supports the buffer protocol, meaning its compitible to other objects that support the buffer protocol,
such as bytes or numpy.array
(for example you can convert a glm matrix to a numpy array and vice versa).
PyGLM is also capable of interpreting iterables (such as tuples) as vectors, so e.g. the following equasion is possible:

result = glm.vec2(1) * (2, 3)

Note: This feature might not or only partially be available in PyGLM versions prior to 2.0.0

PyGLM doesn't support precision qualifiers. All types use the default precision (packed_highp).

If a glm function normally accepts float and double arguments, the higher precision (double) is used.

There is no way to set preprocessor definitions (macros).
If - for example - you need to use the left handed coordinate system, you have to use *LH, so
glm.perspective becomes glm.perspectiveLH.

All types are initialized by default to avoid memory access violations.
(i.e. the macro GLM_FORCE_CTOR_INIT is defined)

In case you need the size of a PyGLM datatype, you can use

glm.sizeof(<type>)

The function glm.identity requires a matrix type as it's argument.

The function glm.frexp(x, exp) returns a tuple (m, e), if the input arguments are numerical.
This function may issue a UserWarning. You can silence this warning using glm.silence(1).

The function glm.value_ptr(x) returns a ctypes pointer of the respective type.
I.e. if the datatype of x is float, then a c_float pointer will be returned.
Likewise the reverse-functions (such as make_vec2(ptr)) will take a ctypes pointer as their argument
and return (in this case) a 2 component vector of the pointers underlying type.

glm.silence(ID) can be used to silence specific warnings.
Supplying an id of 0 will silence all warnings.

FAQ

How to pass the matrices generated by PyGLM to OpenGL functions?

You will find an overview on the [Passing data to external libs] page.

Types and functions are not available after installing from the PyPI using pip install glm

Most likely you've installed glm, a JSON parser and not PyGLM (or a very early version of PyGLM).
The correct install command is:

pip install pyglm

Why is <experimental extension name here> not supported?

I prefer not to add too many experimental extensions to PyGLM, especially as they might change or be removed in the future and it is simply too much effort for me to keep up with all that.  
If you need a specific experimental extension, feel free to submit a feature request on the issue tracker.  
I try adding them on a one-by-one basis.

Short example

from pyglm import glm

# Create a 3D vector
v1 = glm.vec3(1, 2, 3)
v2 = glm.vec3(4, 5, 6)

# Vector addition
v3 = v1 + v2
print(f"Vector addition: {v3}")
# Vector addition: vec3(            5,            7,            9 )

# Vector cross product
# -> The resulting vector is perpendicular to v1 and v2.
cross_product = glm.cross(v1, v2)
print(f"Cross product: {cross_product}")
# Cross product: vec3(           -3,            6,           -3 )

# Vector dot product
# -> If the dot product is equal to 0, the two inputs are perpendicular.
dot_product = glm.dot(v1, cross_product)
print(f"Dot product: {dot_product}")
# Dot product: 0.0

# Create a 4x4 identity matrix
matrix = glm.mat4()
print(f"Identity matrix:\n{matrix}")
# Identity matrix:
# [            1 ][            0 ][            0 ][            0 ]
# [            0 ][            1 ][            0 ][            0 ]
# [            0 ][            0 ][            1 ][            0 ]
# [            0 ][            0 ][            0 ][            1 ]

# Rotate the matrix around the Z-axis
angle_in_radians = glm.radians(45)  # Convert 45 degrees to radians
rotation_matrix = glm.rotate(matrix, angle_in_radians, glm.vec3(0, 0, 1))
print(f"Rotation matrix (45 degrees around Z-axis):\n{rotation_matrix}")
# Rotation matrix (45 degrees around Z-axis):
# [     0.707107 ][    -0.707107 ][            0 ][            0 ]
# [     0.707107 ][     0.707107 ][            0 ][            0 ]
# [            0 ][            0 ][            1 ][            0 ]
# [            0 ][            0 ][            0 ][            1 ]

# Apply the rotation to a vector
# -> We use a vec4 with the w-component (given vec4(x, y, z, w)) set to 1, 
#    to put v1 into homogenous coordinates.
rotated_vector = rotation_matrix * glm.vec4(v1, 1)
print(f"Rotated vector: {rotated_vector}")
# Rotated vector: vec4(    -0.707107,      2.12132,            3,            1 )

PyGLM in action

Want to see what PyGLM can do?
Take a look at the examples from the popular LearnOpenGL tutorials by Joey De Vries running in Python using PyGLM.
LearnOpenGL

Speed comparison to numpy

The following is the output generated by test/PyGLM vs Numpy.py

Evaluating performance of PyGLM compared to NumPy.

Running on platform 'win32'.

Python version:
3.13.0 (tags/v3.13.0:60403a5, Oct  7 2024, 09:38:07) [MSC v.1941 64 bit (AMD64)]

Comparing the following module versions:
PyGLM (DEFAULT) version 2.7.2
 vs
NumPy version 2.1.2
________________________________________________________________________________

The following table shows information about a task to be achieved and the time
it took when using the given module. Lower time is better.
Each task is repeated ten times per module, only showing the best (i.e. lowest)
value.


+----------------------------------------+------------+------------+-----------+
| Description                            | PyGLM time | NumPy time |     ratio |
+----------------------------------------+------------+------------+-----------+
| 3 component vector creation            |            |            |           |
| (100,000 times)                        |        8ms |       30ms |     3.78x |
+----------------------------------------+------------+------------+-----------+
| 3 component vector creation with       |            |            |           |
| custom components                      |            |            |           |
| (50,000 times)                         |        8ms |       33ms |     4.05x |
+----------------------------------------+------------+------------+-----------+
| dot product                            |            |            |           |
| (50,000 times)                         |        3ms |       46ms |    13.53x |
+----------------------------------------+------------+------------+-----------+
| cross product                          |            |            |           |
| (25,000 times)                         |        2ms |      523ms |   288.77x |
+----------------------------------------+------------+------------+-----------+
| L2-Norm of 3 component vector          |            |            |           |
| (100,000 times)                        |        5ms |      249ms |    49.05x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix creation                    |            |            |           |
| (50,000 times)                         |        5ms |       15ms |     3.03x |
+----------------------------------------+------------+------------+-----------+
| 4x4 identity matrix creation           |            |            |           |
| (100,000 times)                        |        6ms |      222ms |    36.61x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix transposition               |            |            |           |
| (50,000 times)                         |        3ms |       23ms |     6.73x |
+----------------------------------------+------------+------------+-----------+
| 4x4 multiplicative inverse             |            |            |           |
| (50,000 times)                         |        4ms |      336ms |    90.30x |
+----------------------------------------+------------+------------+-----------+
| 3 component vector addition            |            |            |           |
| (100,000 times)                        |        5ms |       52ms |    10.11x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix multiplication              |            |            |           |
| (100,000 times)                        |        8ms |       55ms |     6.85x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix x vector multiplication     |            |            |           |
| (100,000 times)                        |        6ms |      152ms |    23.39x |
+----------------------------------------+------------+------------+-----------+
| TOTAL                                  |      0.06s |      1.74s |    26.97x |
+----------------------------------------+------------+------------+-----------+

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyglm-2.8.3.tar.gz (584.0 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pyglm-2.8.3-cp314-cp314t-win_arm64.whl (1.3 MB view details)

Uploaded CPython 3.14tWindows ARM64

pyglm-2.8.3-cp314-cp314t-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.14tWindows x86-64

pyglm-2.8.3-cp314-cp314t-musllinux_1_2_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ x86-64

pyglm-2.8.3-cp314-cp314t-musllinux_1_2_aarch64.whl (12.4 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ ARM64

pyglm-2.8.3-cp314-cp314t-manylinux_2_34_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.34+ x86-64

pyglm-2.8.3-cp314-cp314t-manylinux_2_34_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.34+ ARM64

pyglm-2.8.3-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.17+ x86-64

pyglm-2.8.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (12.7 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.17+ ARM64

pyglm-2.8.3-cp314-cp314t-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.14tmacOS 11.0+ ARM64

pyglm-2.8.3-cp314-cp314t-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.14tmacOS 10.15+ x86-64

pyglm-2.8.3-cp314-cp314-win_arm64.whl (1.3 MB view details)

Uploaded CPython 3.14Windows ARM64

pyglm-2.8.3-cp314-cp314-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.14Windows x86-64

pyglm-2.8.3-cp314-cp314-musllinux_1_2_x86_64.whl (12.8 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ x86-64

pyglm-2.8.3-cp314-cp314-musllinux_1_2_aarch64.whl (11.9 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ ARM64

pyglm-2.8.3-cp314-cp314-manylinux_2_34_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.34+ x86-64

pyglm-2.8.3-cp314-cp314-manylinux_2_34_aarch64.whl (10.9 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.34+ ARM64

pyglm-2.8.3-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (12.8 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ x86-64

pyglm-2.8.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (12.1 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ ARM64

pyglm-2.8.3-cp314-cp314-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

pyglm-2.8.3-cp314-cp314-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.14macOS 10.15+ x86-64

pyglm-2.8.3-cp313-cp313-win_arm64.whl (1.2 MB view details)

Uploaded CPython 3.13Windows ARM64

pyglm-2.8.3-cp313-cp313-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.13Windows x86-64

pyglm-2.8.3-cp313-cp313-musllinux_1_2_x86_64.whl (12.8 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

pyglm-2.8.3-cp313-cp313-musllinux_1_2_aarch64.whl (11.9 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

pyglm-2.8.3-cp313-cp313-manylinux_2_34_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.34+ x86-64

pyglm-2.8.3-cp313-cp313-manylinux_2_34_aarch64.whl (10.9 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.34+ ARM64

pyglm-2.8.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (12.8 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

pyglm-2.8.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (12.2 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

pyglm-2.8.3-cp313-cp313-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

pyglm-2.8.3-cp313-cp313-macosx_10_13_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

pyglm-2.8.3-cp312-cp312-win_arm64.whl (1.2 MB view details)

Uploaded CPython 3.12Windows ARM64

pyglm-2.8.3-cp312-cp312-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.12Windows x86-64

pyglm-2.8.3-cp312-cp312-musllinux_1_2_x86_64.whl (12.8 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

pyglm-2.8.3-cp312-cp312-musllinux_1_2_aarch64.whl (11.9 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

pyglm-2.8.3-cp312-cp312-manylinux_2_34_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.34+ x86-64

pyglm-2.8.3-cp312-cp312-manylinux_2_34_aarch64.whl (10.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.34+ ARM64

pyglm-2.8.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (12.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

pyglm-2.8.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (12.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

pyglm-2.8.3-cp312-cp312-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

pyglm-2.8.3-cp312-cp312-macosx_10_13_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

pyglm-2.8.3-cp311-cp311-win_arm64.whl (1.2 MB view details)

Uploaded CPython 3.11Windows ARM64

pyglm-2.8.3-cp311-cp311-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11Windows x86-64

pyglm-2.8.3-cp311-cp311-musllinux_1_2_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

pyglm-2.8.3-cp311-cp311-musllinux_1_2_aarch64.whl (11.9 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

pyglm-2.8.3-cp311-cp311-manylinux_2_34_x86_64.whl (11.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.34+ x86-64

pyglm-2.8.3-cp311-cp311-manylinux_2_34_aarch64.whl (10.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.34+ ARM64

pyglm-2.8.3-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

pyglm-2.8.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (12.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

pyglm-2.8.3-cp311-cp311-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

pyglm-2.8.3-cp311-cp311-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

pyglm-2.8.3-cp310-cp310-win_arm64.whl (1.2 MB view details)

Uploaded CPython 3.10Windows ARM64

pyglm-2.8.3-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10Windows x86-64

pyglm-2.8.3-cp310-cp310-musllinux_1_2_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

pyglm-2.8.3-cp310-cp310-musllinux_1_2_aarch64.whl (11.5 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

pyglm-2.8.3-cp310-cp310-manylinux_2_34_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.34+ x86-64

pyglm-2.8.3-cp310-cp310-manylinux_2_34_aarch64.whl (10.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.34+ ARM64

pyglm-2.8.3-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pyglm-2.8.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (11.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

pyglm-2.8.3-cp310-cp310-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

pyglm-2.8.3-cp310-cp310-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

pyglm-2.8.3-cp39-cp39-win_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9Windows ARM64

pyglm-2.8.3-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9Windows x86-64

pyglm-2.8.3-cp39-cp39-musllinux_1_2_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

pyglm-2.8.3-cp39-cp39-musllinux_1_2_aarch64.whl (11.2 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ ARM64

pyglm-2.8.3-cp39-cp39-manylinux_2_34_x86_64.whl (11.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.34+ x86-64

pyglm-2.8.3-cp39-cp39-manylinux_2_34_aarch64.whl (10.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.34+ ARM64

pyglm-2.8.3-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

pyglm-2.8.3-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (11.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

pyglm-2.8.3-cp39-cp39-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

pyglm-2.8.3-cp39-cp39-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file pyglm-2.8.3.tar.gz.

File metadata

  • Download URL: pyglm-2.8.3.tar.gz
  • Upload date:
  • Size: 584.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyglm-2.8.3.tar.gz
Algorithm Hash digest
SHA256 161781ea4d1267f796b645f85ebff53aeb8ee4f13b4e993c04d64c96d286e534
MD5 6af2d77d69fe7b9fe2f0780b0f549786
BLAKE2b-256 418bbdaf7b9cacecd28f7b4c6fc2d7d136824c506ad38cfdb37a05ea7ec88694

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314t-win_arm64.whl.

File metadata

  • Download URL: pyglm-2.8.3-cp314-cp314t-win_arm64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.14t, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyglm-2.8.3-cp314-cp314t-win_arm64.whl
Algorithm Hash digest
SHA256 69400ad1852ca0972e4d9cbef9d9510941d4b81dc0fffebc5ac796a85440a119
MD5 e0f901a2a479dc2a656f438d607ece1a
BLAKE2b-256 a7f98bc8d010503a250319c55d2ceec5f90b0e807c7f85d581638c5ecd0a81de

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314t-win_amd64.whl.

File metadata

  • Download URL: pyglm-2.8.3-cp314-cp314t-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.14t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyglm-2.8.3-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 78caadaf9cc2ddea1c55b0d44fa8032f35c9f821a6f152b72422e5657d38f01d
MD5 4bc44cdebd59a95ebd7b52ea275fd56b
BLAKE2b-256 2b5c7f15edd05020540748dad8f5eae0a07ed7f14f699bff530172b8850bd998

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp314-cp314t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 699f852e0335b79d0b664ba1c2d02cb4689256cda786e7780e821f60b0824c46
MD5 e422d0d9a79ebf13befb5cfe95c63f5b
BLAKE2b-256 0c066bb4e8a09f7dd2bf8dc1f4cc5edc938fc1247a1b2770833515fb418fc695

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp314-cp314t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 bd34a8670debef4a55bc756b14cbe8b0a4daa49f8f6850c86c5e11d20554927f
MD5 974fb03ee5b74555f5cf53d5155f75e5
BLAKE2b-256 6907be893aee24a9a8b5400feda4d032fad9d281047d4379aa9f5ef4bea1f6a4

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314t-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp314-cp314t-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 3e37c15b6c3e08f960b34ff9ec42e73469dfd868aec214e8a347da6c9d0245d6
MD5 c06cb39096726de46e424af01ab2e234
BLAKE2b-256 16aae03cc7a2daceb1bbdf98780a991a323e4078254584cf6664984a626ecfe1

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314t-manylinux_2_34_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp314-cp314t-manylinux_2_34_aarch64.whl
Algorithm Hash digest
SHA256 879ee9ab3c8ab47b1de59fe7e593eda854b8349f274ca60f057b83f3a405b84d
MD5 8793b092dab9f61182a0cee4f8a702ea
BLAKE2b-256 3b21b1f52dc73d610e36aa3ccf3ef61634530e6f97c2ca809a057839bf578667

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 0a76c8eaba0c58f5738e87be5efcd16c4e75540fe6ebfdf15c236a799a61358e
MD5 45f141441df99bf298505b76e75f9937
BLAKE2b-256 a00ebc3c03038da822d1a66c38e166d4c89b6bdab846e576ac226442813af7f4

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 af3ddee3d150bbef68ee7338ccd3e0710b75b08121b8efd52d786b0d2b6731be
MD5 133785521490b6615632a328c93dd49b
BLAKE2b-256 32408581283c00e2a18a6bb20a9192e25a792b605c53dee1c3abb8871eb0d3ca

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp314-cp314t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a7835d18747ab9f8e736e343cc35bee0a514f18add282f1fc8035945fcf9d9bd
MD5 fef98db0c39e548f26f23a06bf2bf0c7
BLAKE2b-256 93f581bb8b52e132dc1ecc87b7ffb50c714b4fd2f71f98b801dd376e036f942b

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314t-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp314-cp314t-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6a1f1ab8debc06e0fdedb3f4285ded4bec38bf075652c393039838504767e6cf
MD5 07b460b0b5e84385d8e2a3b154b96e53
BLAKE2b-256 328e867045b54da8257b21c71c0255ba7a231c251aae4b5f26b12eb50b651cc7

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314-win_arm64.whl.

File metadata

  • Download URL: pyglm-2.8.3-cp314-cp314-win_arm64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.14, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyglm-2.8.3-cp314-cp314-win_arm64.whl
Algorithm Hash digest
SHA256 2b16ec33bd43c514502bae8de2b319d168259090e101e1cde79cd0a7d33e1185
MD5 afb9f6f2f1f5ac966a41ca85a4165fda
BLAKE2b-256 355174c0a3107567dc769c06b6c04c7bc828f33792e089036c637334b7e4c573

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: pyglm-2.8.3-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyglm-2.8.3-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 15c77bc46ff69d945565309e13ca99c4a001d6a941a80c45f26fbdec80fa16c4
MD5 24ee74e43eeb35a6df7d049c0389976a
BLAKE2b-256 a1d1cc1f75ee77fd2f9bcb122bc7f3a628710fe3f0bc517333fa9f38268a7065

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp314-cp314-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 77878c1b8c713b9e39fe32f870d82e20c864da3b11a3b875eca06c270b04cdbe
MD5 cec631421ac8130102483de19b8f3843
BLAKE2b-256 4e10d8ecf9b5ac3b6fc1b179b33dfbd087b8f4d4b12bab99b5794f569a15a99a

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp314-cp314-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 4beb0ada21e7641a577f274496451befcde79965467ef4027bd933334b3de39b
MD5 0614932882da44aaa332b543ba4b8371
BLAKE2b-256 d30d00ef293153b6ca7e56d1be6facbd9d0a8e331d0c6d3114f47f2cf2913eda

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp314-cp314-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 ec7cc14d2eb9f46a18012ee7c1a164e0395b058ceb6e341bf6d986316b698574
MD5 7d3fd6ad1b56d4ef9474878ad0fb510e
BLAKE2b-256 febf3c78a9718e1d26c5b6ec468a584eb30cd797c46b6edd08e79cb1d67e8bf0

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314-manylinux_2_34_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp314-cp314-manylinux_2_34_aarch64.whl
Algorithm Hash digest
SHA256 e958d65ed55f2716fd8a3a2ef872cc52893ea7300d7feec62dccb27ec25fbc2f
MD5 814c9c8c7d0d19987f3952c64ddd4cee
BLAKE2b-256 4cd62481433abe537d7019d9ce75eba86b57e1731e3e0352fd1ac7f31f4d1883

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 83effb89e2cf6dd79cf9ebecf2f9fbda3d25a92b61af264de3cadad408911de6
MD5 5ab1c6bf8dce5b85b7c512328162b477
BLAKE2b-256 eb3e8d9f307649e9b79b34ae51303e46e7012cc2550d60e6dd00ea8d3d8c9cf2

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 cb8ea0d6721c763a26eacde59b2c9165719050dcf49c99a2857f6e1e5a5f30bb
MD5 79ecb23872c6c70d20ed2c380e77a78d
BLAKE2b-256 a7ba186176d1c3e26196ae4bec4b228bdbb1304576f2038a7f1635070923ee48

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3249bfe5352e18cc777fac591665679a99f270e1ff27cd11dc349af07684f007
MD5 6910ac37aaf6e530a373083d84aa7cdb
BLAKE2b-256 27c037cced4a1b29957a29baebc1f0034be5d5419adf12da4b99140c56152cdb

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp314-cp314-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp314-cp314-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b312012458d0537b3d84f24f4ba51fd3930df7a0773fc643e36f8df27b807c7a
MD5 dad9eea0b261492f18ccdc4911de5d9b
BLAKE2b-256 65fe494d7dce3fcaf0123e787320b4a558d8fe733d6d0e23b7fe51e687f88dc2

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp313-cp313-win_arm64.whl.

File metadata

  • Download URL: pyglm-2.8.3-cp313-cp313-win_arm64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.13, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyglm-2.8.3-cp313-cp313-win_arm64.whl
Algorithm Hash digest
SHA256 73ff3785dfc4ce017626d7ab56d6711a7119c29e2e71294efed73810c1d307f9
MD5 7bab09b8fc7124a8e3c8efc56746512c
BLAKE2b-256 fa1e9b8ba9d4627585797d8bda952412c93a4c09b70cb25e64756a52accddc1e

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pyglm-2.8.3-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyglm-2.8.3-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 33118ef1d678ab573546757dee7f0a1ca2fba8e8d7760c9fe6320fe0cfa3deb7
MD5 073ad1f2b1be39b7a9b22641ba33d5c2
BLAKE2b-256 17fd71b44ee5ac341e9979731a7b868e237f3775e140a9481cea79bae7abb83c

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 12fa61feefa5a255097d0887415bce9dd72c1dd5e5a8c6577121ee5348336a16
MD5 b0c9ac63f8f55b7e476d121d08ecdfa1
BLAKE2b-256 7258f40f109ac025bb18412db78e6e73ffc20a17b6b495de90352f5aabfb9982

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 08f8b1bd0d80ce396ee9cd5d3d4c7aeb4bbfa2a54dc73413924e3c9982412528
MD5 ea7e2961c0dd317b836ac63068a1c013
BLAKE2b-256 b5e6286d1879eae87199f086136b08c70a3bff27880417f98dadc0cbcdb65e50

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp313-cp313-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp313-cp313-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 e3bdda68f75ad270e66b0fc7a1883749489cca14c44cbe22bac038fa170a8a1c
MD5 6398cf0de6f3e27ad1a82a19ed8c7c7f
BLAKE2b-256 e1a1035068410f60ed53007e0488af96f7e4634b679e9156d1090e70732b2159

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp313-cp313-manylinux_2_34_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp313-cp313-manylinux_2_34_aarch64.whl
Algorithm Hash digest
SHA256 0c652650912dbd88994fa02ec9dba2f3b35dc3995427b6ae8056ae542d5a060a
MD5 016727f8752c8614a1ed12d8ed1af58b
BLAKE2b-256 7cd25475d0791b585ae26dc0d690862a0e1e6fda243552a1718628dd937e5543

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 3eea9093210afb946769c84fe31f17a9f73696a1161ee84fb42e9255f8c5cc8a
MD5 197980c3a20aa6291fdb4e29cd757a27
BLAKE2b-256 b0a6befefccf1c8a0a66f09a7a1a1d324a3f988cb5e6b634026280518e5a83cd

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 e1ec0dfb8f2c848c4ee6330c70a1ca9333004776c8e5ec76096e0b67c739f688
MD5 53fbc9b670a8ebd2b59ec7b7e2be7bca
BLAKE2b-256 ff702c7fe768900ee9d0f87e7a89375fa7d83b5b0a8f0eee8d0ad06b22a96e37

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eaf6241f7c3ff169575e11da78f4439422517e42558961332db4cd09e9599267
MD5 05367cbd160c9aadfff897ca1e934154
BLAKE2b-256 1e5f10c4cd636c3e6c63328a476f84bb03501d8016f12053c3a82ba588fc61ce

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7a6d07b6b73e55a36e1b6daa63acb53f4912f2ddf88f434af4cc70441435aef8
MD5 60a3e9081049e10d2de87daeb4988d4e
BLAKE2b-256 2d22ee11dff20adfc6aac3e0482ed275843e0b9854dbc2e812ab56cdacbed8d6

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: pyglm-2.8.3-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyglm-2.8.3-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 ba2de300dbaf39cb6cd82ce7db05a8dcf85bb7dacf1ec65db18b1ebc34438a0d
MD5 6b338856fd43af5857518600ef5a10ef
BLAKE2b-256 f5d6a24ac1280fc1cd03fe1ff0fa2632fbafdee1a4abe9cd319cb0ae6aed99bf

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyglm-2.8.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyglm-2.8.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 5f7ff6f4ac14b092d897931b9ef76bb8108b5faa6f5118963c9de86c6fa18efc
MD5 49aa2f7ecd8dcdf04736c4a28dbf2a36
BLAKE2b-256 7011c80ffa11495b5788cfa5d021ae3bdbef20c941ead87911b2d50d534b2054

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 04be7de24547130b8d413bc96ab9998d95db89cbaf224f401624ac1fa62bc431
MD5 4c0a6349f817deb1fd3f7a92b47ca9c4
BLAKE2b-256 9be79cbee60fbd66592a0cc46ad4e26c4bd26d55f45411323a5b03e3bd9a33d5

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 71ace7b15dd6d2ea9dbeadd43738ce69e7134547fc4674617084df5096e9b866
MD5 9031ed769731aec6235e693e1db5ae5c
BLAKE2b-256 f0152b1a7761b33c309f4c14ce505f671fb75cc2c4b285af8fdcfb6d580cc1be

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp312-cp312-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp312-cp312-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 8abf221111db95e34620e446a853d43c887ced10d5c217e2df18471c9ac683ef
MD5 2e7384b897b979f7743c25a72b0c2e5e
BLAKE2b-256 eb20d4003e53a590b8dd8fa9ab2e6848a1acaeb8d239c95161dc2e05f5972c9c

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp312-cp312-manylinux_2_34_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp312-cp312-manylinux_2_34_aarch64.whl
Algorithm Hash digest
SHA256 f80d208e558a024a3dc83300bd661a71aa4cda884a256c5b87179059a1c55373
MD5 52a23193dd6244dcc2ae161f88d36c28
BLAKE2b-256 e49c04c525d78356e6493d0abc3ea945802befd5b813b1820e5b78dd5ca2f072

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 1d2305b258bebc358e00b8c85c3bc2d6f78d64f9b3f8802e1699c3e8dae54361
MD5 285c016beb48428f04cbc490d0d972d3
BLAKE2b-256 f1973e6648727f597885f4e6d92b77b49dc2fa2b65a2b9ea3ab35caaff06e072

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 a14f1ffdc30a6f53334d16651888f60a2f8a63e05613357234c5592747b906bf
MD5 84605725b3b2c00fc670247cfbc87384
BLAKE2b-256 f96d840566e3cbadb4d66d60c112f2c507260b46aa674e6fd22913493cfb7cd4

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 570da7032ff1185c842c5864d080ee5eab091fa53ec217b8d4d4034c22ba744f
MD5 862ad8f823343d3e8d158bb7bde5e84e
BLAKE2b-256 77365feaf47a5f105cf478505cde5e32b4ce19649a11f802afaee1063ad3adaf

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 72c75bd76ade851bf5c2b12cbe384193ea901a73474d57e4d7044bbbcd7d08fd
MD5 0b253872060c11a93715915dd049cb5d
BLAKE2b-256 9aa08759ed290b8d9830a6beda947c48cfb4e7ac9a14c04c8b612e1954dd0cf8

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: pyglm-2.8.3-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyglm-2.8.3-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 28dba29d5b80cd9e81cf9875290bcedb451c83ca532de90c451d5b3a79727fcc
MD5 cf5152f9945d29b5aae88d0c9622a5c2
BLAKE2b-256 e47b2042502444d7d823e1e5f8c8776f8fe029b90da57ae76ec245c4f2263e39

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyglm-2.8.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyglm-2.8.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ae0dd576e89638654079f554d3f41b5d463ff6fee68961e4cd8b23069bff7e55
MD5 0640382bc2028011e8c5d36e6a67e0d1
BLAKE2b-256 ee1e891cede4878d7b0644b96af3999c5417c50bfccce18b2653ffc02e7483fe

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 957816050c3bded151be3183e3160e7fc6b31f708b17d282f6c401ba1536f2a4
MD5 969cf497742c3bdbd54a285a8444d3e3
BLAKE2b-256 737055c2c56c9b29e9862ddafabfc90b97615c0470424fdddfaff7c56092e79c

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 71132521c65b43badb3338edc12102eafacc4bf8597378ea7bb57a700975ce77
MD5 6e47ad8aa8e611375b874c93dc6bca65
BLAKE2b-256 4b42ef3cddd57fb8e0ab5b44bd0146704efa1e651015bf85296b16e0413890e7

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp311-cp311-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp311-cp311-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 96da922be7d7d754f2ea269687c9215906ecc651b5f197ff92dcb497230d5f57
MD5 47584a1fd290a5552677580deee28ea5
BLAKE2b-256 7c5d73cfdde12032bf741cb2e3de5467814b57611d32f5e42c4196847a75e777

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp311-cp311-manylinux_2_34_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp311-cp311-manylinux_2_34_aarch64.whl
Algorithm Hash digest
SHA256 32e7a2815f39a49f5434d66d2d109c020d3e7125044905d3afebcb597d6a583e
MD5 8c0575676f394d0474e291c7019aea2d
BLAKE2b-256 c6c7f76f2dd862a00e1a34e9ef76a6d5ccf7454224f734b9ff5d5780dd6ddf16

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 2f1424cd0a5d49bc0d8c43a9028a471dcb90a22ba1954baad9158659726f256c
MD5 482ef0510d6041267aec8cf753ff2ac9
BLAKE2b-256 a552a3e9b3e91b312e0b21e21ba587bca9601e032e33e2693be7a9c864660e72

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 4ccdc19eb1b432297aebc60e8f72f7870186f2defdaf2e0d0a5bc449057dad01
MD5 9ec424ffa0eb3d3038b4669f3d425b77
BLAKE2b-256 5d398449cc2901a6693e89ed2f5d6913d99cc16816e8b539662700c11e341487

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 43ac57b7ec33f0ec1e7224a4a8833c0f1405c446177e5abcd6d87867d286f8b3
MD5 994852bec85335c897f4a2eb432847f2
BLAKE2b-256 f723beab60070ef7dcfbac7de7e6512e42eea8ffad0a11ff59ab6b1c82849ef5

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 94c7eb9c967423a123306f3a1bf66691cd66ed5ef17165c29424c096a2f96537
MD5 a141329e31661c22b0242f5220300513
BLAKE2b-256 db083a3e227515a7e4511699bb467379e8184fe883ba17a96adfa8b246e4a7b1

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: pyglm-2.8.3-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyglm-2.8.3-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 638e7cd772d2a3cc0f1cc64904085b6eaf202d2790605a04e7c1bd559f06e99b
MD5 bd7132cc56efff9bcc74e233dabc63cd
BLAKE2b-256 75df7ac777b69f6e9c52ae22a6a1fbf85837cae6ec4c3cc6596a6d638bc13eb8

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyglm-2.8.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyglm-2.8.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f6f906e9e135b8a7f8548e31500a26bf2de94c507feace6f1a999d57774fa2b2
MD5 d7a6651333257a2ed4e367e4d3a841a8
BLAKE2b-256 85f091244701fe9f1ecb383d823b24eceee7465666da38ba4d530c971d58e94c

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a9f9e0ab479a51d5482a3b1b0eec8b28cfd3436d9b213ecb71c706c0eb9da45f
MD5 2f2a2e52ac984153b53dde55cf323c59
BLAKE2b-256 1d40efeb069603adedff32993befea76d796021a5614864da242a798c3fb0b3c

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 19b8d942bf9ae5349e78c851094407af3c0ee967684dff11fd13954380fe48ca
MD5 ee39b412dd0e71f17343e111aef1fa5d
BLAKE2b-256 c51dab166ec5885d2bd48ab14c628292445b5b4137d06f0643c715286593560c

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp310-cp310-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp310-cp310-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 a5d9e0fe8778cc16a18fdf594e4f672f3e18cac4b38c74d226e29badf0a3844d
MD5 52e5abd96f89f7eabfcc8f1867a36ef3
BLAKE2b-256 7c6f34bd16721b269446b997c09c015b5accecfecd4b233b3837983c2665bfe6

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp310-cp310-manylinux_2_34_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp310-cp310-manylinux_2_34_aarch64.whl
Algorithm Hash digest
SHA256 463113f24a6b41eff41721c4c65013092368cf56ec32e0523b71a3df43d34cbf
MD5 5568355efca3a20a164eb6bcbdd4728b
BLAKE2b-256 21b83c7ce31c14042fa1ca00e42196001d1561d4b6f508da3d6b0d86c4ee7ea6

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 b24bd5f9ba4b6966a4bf7d38931cdf8db3a94cafac40e85fc64ec245f2289efa
MD5 0a41cb922fe0ec51e74c738cd4abf34a
BLAKE2b-256 b2be8a52a6c0ece5caeccd1e752257ca426e7395a2afe2281443fc6b79a03806

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 c804ac7a678db3441f15f09cb600ed23c504ceab0d8129fc8818699074f816ba
MD5 b2347a5482f83de2755551faedd22088
BLAKE2b-256 966177498ca6fdfaecbf7016b89d303e687a94402762c332b538b1ff2a84a405

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3986e7c3b9d0b112972cc2dc2f02b6720cea16aca6ec38eee5bb9effa17af035
MD5 bf4bd355fd52ad1341a2dfeddac1fab7
BLAKE2b-256 d8fae7d73ea259cc7a3ebcbf80f82e13d0e619afdfa4e2b23cc36c7a2d3c5fdd

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 159547399d3e700cdf2e6b6480c467f0a2e1abf140c01d395b7228793bda46ad
MD5 460234f6ffb112a77b2e23bf8ae32c51
BLAKE2b-256 134c181816f46073c1875a7f9ac5c6edcebc37244cccf437af78e044c0b9d983

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: pyglm-2.8.3-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyglm-2.8.3-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 8396c7a73d12aa6db735ce5d49f2883fc392c1214376202b0a438c8441bd84b6
MD5 f53e16378b7f8fface4c461b0f259ba0
BLAKE2b-256 b48fa1251fb9f1f366cd9f0796778f29bdbb6a8792d8686f77107134818f5bcf

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyglm-2.8.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyglm-2.8.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f4230df2bbc97424333d66b8550b7ba8865d79d2009dbcb551330cc5221e7430
MD5 39d27a4b020571104606b41cef000be2
BLAKE2b-256 5f9056eff42ec580b00e91b3cfe51ec38322b7ba912b9c9eb12f5fd59a65cf77

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1f21818b13d59301d832679d3b81095bf96c2a46f67b8444188acd23c1080561
MD5 d4c545e5ca4979ae7e5d48223cd2c490
BLAKE2b-256 ee9b2484429e1ce1f42d44b6d8814508b68db2bf6ca1114eec4b059402263ab5

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3205a615aebb89f8584429c4fae490e4b1421f615fc262897a77467c53ecf536
MD5 6b12bc2a742c2bf37a13717fb4b4d529
BLAKE2b-256 cf38e0874490e961ca752eb86916675ac565597e2a0a960092838de89a9f69b1

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp39-cp39-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp39-cp39-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 3f97b2d5bb02ef0868ec973e2d4dff86bf9b65b6d3f40b4bdc16dc50bc9e1703
MD5 ee45a0f5b33950a1c42d640d7e55a875
BLAKE2b-256 d59a09d246f5ab0e7b2760cd78b374314e9da0bde1aa02b64c4f1d9bb688aa69

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp39-cp39-manylinux_2_34_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp39-cp39-manylinux_2_34_aarch64.whl
Algorithm Hash digest
SHA256 3408bbd0997cadee48ec9a1422e1396d954a30c23f2e3489327d959bc655fd97
MD5 a350e8e83c7fb0df6ecf006fac124b43
BLAKE2b-256 80a04110cfee4a9283217ea516968ba3a236b4762fbc0463dbed99427d03c65f

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 5c03082aa1875b5fb68d0491f68491b530d757e9d5b08ac1819605d263b6630c
MD5 40a06bc00a2b7665d451f6ddc07f8977
BLAKE2b-256 7cdbb97616266164a62aa9783cc00acadfc490f46d7933922ef75fc73ca4ce64

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 4074ff6e7b4abc4c8f1ea76db6407374524ba311b74d2276c1571ea5ae86b7bc
MD5 267a01c8090ad7ad53914c866e8112a0
BLAKE2b-256 bdd82c4577efdce664bfeb02430e64ee7459daf6dc8def5517a41285c1e89322

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cfd651d124ce62c5de2a547f895979ce4e9c126513e4a5ba39261e9d0b651b15
MD5 e2bb21ccfa5cafdc090f7aed147265eb
BLAKE2b-256 8907c0bedc1c78eb85f46a0825145a8f671cc727f84580e4c99a05cf76c9c37a

See more details on using hashes here.

File details

Details for the file pyglm-2.8.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a70c0eeb0db43ae95b3a18f888bb78a6e3807c9eb50080c810a30d9ef6a3bff1
MD5 c1241b6adf38b4ef51ffcab421e2636b
BLAKE2b-256 af7ea049f581ed333282b243fc495477a44e992493a663fa54fb39874d371046

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page