Skip to main content

OpenGL Mathematics library for Python

Project description

PyGLM

OpenGL Mathematics (GLM) library for Python

GLSL + Optional features + Python = PyGLM
A mathematics library for graphics programming.

PyGLM is a Python extension written in C++.
By using GLM by G-Truc under the hood, it manages to bring glm's features to Python.  
Some features are unsupported (such as most unstable extensions).
If you encounter any issues or want to request a feature, please create an issue on the issue tracker.

For a complete reference of the types and functions, please take a look at the wiki.

Tiny Documentation

Why PyGLM?

Besides the obvious - being mostly compatible with GLM - PyGLM offers a variety of features for vector and matrix manipulation.
It has a lot of possible use cases, including 3D-Graphics (OpenGL, DirectX, ...), Physics and more.

At the same time, it has great performance, usually being a lot faster than numpy! (see end of page)
(depending on the individual function)

Installation

PyGLM supports Windows, Linux, MacOS and other operating systems.

It can be installed from the PyPI using pip:

pip install pyglm

And finally imported and used:

from pyglm import glm

Changed in version 2.8
When using PyGLM version 2.7.3 or earlier, use

try:
    from pyglm import glm
except ImportError:
    import glm

Attention: Using import glm will be deprecated in PyGLM 3.0.

Using PyGLM

PyGLM's syntax is very similar to the original GLM's syntax.
The module glm contains all of PyGLM's types and functions.
Typing stubs by @esoma are available in the glm_typing module.

For more information, take a look at the wiki.

License requirements

Please make sure to include COPYING in your project when you use PyGLM!
(this is especially relevant for binary distributions, e.g. *.exe)

You can do so by copying the COPYING file (or it's contents) to your project.

Differences to glm

Instead of using double colons (::) for namespaces, periods (.) are used, so
glm::vec2 becomes glm.vec2.

PyGLM supports the buffer protocol, meaning its compitible to other objects that support the buffer protocol,
such as bytes or numpy.array
(for example you can convert a glm matrix to a numpy array and vice versa).
PyGLM is also capable of interpreting iterables (such as tuples) as vectors, so e.g. the following equasion is possible:

result = glm.vec2(1) * (2, 3)

Note: This feature might not or only partially be available in PyGLM versions prior to 2.0.0

PyGLM doesn't support precision qualifiers. All types use the default precision (packed_highp).

If a glm function normally accepts float and double arguments, the higher precision (double) is used.

There is no way to set preprocessor definitions (macros).
If - for example - you need to use the left handed coordinate system, you have to use *LH, so
glm.perspective becomes glm.perspectiveLH.

All types are initialized by default to avoid memory access violations.
(i.e. the macro GLM_FORCE_CTOR_INIT is defined)

In case you need the size of a PyGLM datatype, you can use

glm.sizeof(<type>)

The function glm.identity requires a matrix type as it's argument.

The function glm.frexp(x, exp) returns a tuple (m, e), if the input arguments are numerical.
This function may issue a UserWarning. You can silence this warning using glm.silence(1).

The function glm.value_ptr(x) returns a ctypes pointer of the respective type.
I.e. if the datatype of x is float, then a c_float pointer will be returned.
Likewise the reverse-functions (such as make_vec2(ptr)) will take a ctypes pointer as their argument
and return (in this case) a 2 component vector of the pointers underlying type.

glm.silence(ID) can be used to silence specific warnings.
Supplying an id of 0 will silence all warnings.

FAQ

How to pass the matrices generated by PyGLM to OpenGL functions?

You will find an overview on the [Passing data to external libs] page.

Types and functions are not available after installing from the PyPI using pip install glm

Most likely you've installed glm, a JSON parser and not PyGLM (or a very early version of PyGLM).
The correct install command is:

pip install pyglm

Why is <experimental extension name here> not supported?

I prefer not to add too many experimental extensions to PyGLM, especially as they might change or be removed in the future and it is simply too much effort for me to keep up with all that.  
If you need a specific experimental extension, feel free to submit a feature request on the issue tracker.  
I try adding them on a one-by-one basis.

Short example

from pyglm import glm

# Create a 3D vector
v1 = glm.vec3(1, 2, 3)
v2 = glm.vec3(4, 5, 6)

# Vector addition
v3 = v1 + v2
print(f"Vector addition: {v3}")
# Vector addition: vec3(            5,            7,            9 )

# Vector cross product
# -> The resulting vector is perpendicular to v1 and v2.
cross_product = glm.cross(v1, v2)
print(f"Cross product: {cross_product}")
# Cross product: vec3(           -3,            6,           -3 )

# Vector dot product
# -> If the dot product is equal to 0, the two inputs are perpendicular.
dot_product = glm.dot(v1, cross_product)
print(f"Dot product: {dot_product}")
# Dot product: 0.0

# Create a 4x4 identity matrix
matrix = glm.mat4()
print(f"Identity matrix:\n{matrix}")
# Identity matrix:
# [            1 ][            0 ][            0 ][            0 ]
# [            0 ][            1 ][            0 ][            0 ]
# [            0 ][            0 ][            1 ][            0 ]
# [            0 ][            0 ][            0 ][            1 ]

# Rotate the matrix around the Z-axis
angle_in_radians = glm.radians(45)  # Convert 45 degrees to radians
rotation_matrix = glm.rotate(matrix, angle_in_radians, glm.vec3(0, 0, 1))
print(f"Rotation matrix (45 degrees around Z-axis):\n{rotation_matrix}")
# Rotation matrix (45 degrees around Z-axis):
# [     0.707107 ][    -0.707107 ][            0 ][            0 ]
# [     0.707107 ][     0.707107 ][            0 ][            0 ]
# [            0 ][            0 ][            1 ][            0 ]
# [            0 ][            0 ][            0 ][            1 ]

# Apply the rotation to a vector
# -> We use a vec4 with the w-component (given vec4(x, y, z, w)) set to 1, 
#    to put v1 into homogenous coordinates.
rotated_vector = rotation_matrix * glm.vec4(v1, 1)
print(f"Rotated vector: {rotated_vector}")
# Rotated vector: vec4(    -0.707107,      2.12132,            3,            1 )

PyGLM in action

Want to see what PyGLM can do?
Take a look at the examples from the popular LearnOpenGL tutorials by Joey De Vries running in Python using PyGLM.
LearnOpenGL

Speed comparison to numpy

The following is the output generated by test/PyGLM vs Numpy.py

Evaluating performance of PyGLM compared to NumPy.

Running on platform 'win32'.

Python version:
3.13.0 (tags/v3.13.0:60403a5, Oct  7 2024, 09:38:07) [MSC v.1941 64 bit (AMD64)]

Comparing the following module versions:
PyGLM (DEFAULT) version 2.7.2
 vs
NumPy version 2.1.2
________________________________________________________________________________

The following table shows information about a task to be achieved and the time
it took when using the given module. Lower time is better.
Each task is repeated ten times per module, only showing the best (i.e. lowest)
value.


+----------------------------------------+------------+------------+-----------+
| Description                            | PyGLM time | NumPy time |     ratio |
+----------------------------------------+------------+------------+-----------+
| 3 component vector creation            |            |            |           |
| (100,000 times)                        |        8ms |       30ms |     3.78x |
+----------------------------------------+------------+------------+-----------+
| 3 component vector creation with       |            |            |           |
| custom components                      |            |            |           |
| (50,000 times)                         |        8ms |       33ms |     4.05x |
+----------------------------------------+------------+------------+-----------+
| dot product                            |            |            |           |
| (50,000 times)                         |        3ms |       46ms |    13.53x |
+----------------------------------------+------------+------------+-----------+
| cross product                          |            |            |           |
| (25,000 times)                         |        2ms |      523ms |   288.77x |
+----------------------------------------+------------+------------+-----------+
| L2-Norm of 3 component vector          |            |            |           |
| (100,000 times)                        |        5ms |      249ms |    49.05x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix creation                    |            |            |           |
| (50,000 times)                         |        5ms |       15ms |     3.03x |
+----------------------------------------+------------+------------+-----------+
| 4x4 identity matrix creation           |            |            |           |
| (100,000 times)                        |        6ms |      222ms |    36.61x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix transposition               |            |            |           |
| (50,000 times)                         |        3ms |       23ms |     6.73x |
+----------------------------------------+------------+------------+-----------+
| 4x4 multiplicative inverse             |            |            |           |
| (50,000 times)                         |        4ms |      336ms |    90.30x |
+----------------------------------------+------------+------------+-----------+
| 3 component vector addition            |            |            |           |
| (100,000 times)                        |        5ms |       52ms |    10.11x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix multiplication              |            |            |           |
| (100,000 times)                        |        8ms |       55ms |     6.85x |
+----------------------------------------+------------+------------+-----------+
| 4x4 matrix x vector multiplication     |            |            |           |
| (100,000 times)                        |        6ms |      152ms |    23.39x |
+----------------------------------------+------------+------------+-----------+
| TOTAL                                  |      0.06s |      1.74s |    26.97x |
+----------------------------------------+------------+------------+-----------+

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyglm-2.8.2.tar.gz (584.2 kB view details)

Uploaded Source

Built Distributions

pyglm-2.8.2-cp313-cp313-win_arm64.whl (1.2 MB view details)

Uploaded CPython 3.13 Windows ARM64

pyglm-2.8.2-cp313-cp313-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.13 Windows x86-64

pyglm-2.8.2-cp313-cp313-win32.whl (1.3 MB view details)

Uploaded CPython 3.13 Windows x86

pyglm-2.8.2-cp313-cp313-musllinux_1_2_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

pyglm-2.8.2-cp313-cp313-musllinux_1_2_i686.whl (12.1 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

pyglm-2.8.2-cp313-cp313-musllinux_1_2_aarch64.whl (12.0 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

pyglm-2.8.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

pyglm-2.8.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (11.7 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

pyglm-2.8.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.8 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

pyglm-2.8.2-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (11.6 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

pyglm-2.8.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.2 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

pyglm-2.8.2-cp313-cp313-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

pyglm-2.8.2-cp313-cp313-macosx_10_13_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

pyglm-2.8.2-cp312-cp312-win_arm64.whl (1.2 MB view details)

Uploaded CPython 3.12 Windows ARM64

pyglm-2.8.2-cp312-cp312-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyglm-2.8.2-cp312-cp312-win32.whl (1.3 MB view details)

Uploaded CPython 3.12 Windows x86

pyglm-2.8.2-cp312-cp312-musllinux_1_2_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

pyglm-2.8.2-cp312-cp312-musllinux_1_2_i686.whl (12.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

pyglm-2.8.2-cp312-cp312-musllinux_1_2_aarch64.whl (12.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

pyglm-2.8.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

pyglm-2.8.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (11.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

pyglm-2.8.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyglm-2.8.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (11.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

pyglm-2.8.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyglm-2.8.2-cp312-cp312-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyglm-2.8.2-cp312-cp312-macosx_10_13_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pyglm-2.8.2-cp311-cp311-win_arm64.whl (1.2 MB view details)

Uploaded CPython 3.11 Windows ARM64

pyglm-2.8.2-cp311-cp311-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyglm-2.8.2-cp311-cp311-win32.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86

pyglm-2.8.2-cp311-cp311-musllinux_1_2_x86_64.whl (12.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

pyglm-2.8.2-cp311-cp311-musllinux_1_2_i686.whl (12.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

pyglm-2.8.2-cp311-cp311-musllinux_1_2_aarch64.whl (11.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

pyglm-2.8.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

pyglm-2.8.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (11.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

pyglm-2.8.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyglm-2.8.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (11.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

pyglm-2.8.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyglm-2.8.2-cp311-cp311-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyglm-2.8.2-cp311-cp311-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyglm-2.8.2-cp310-cp310-win_arm64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows ARM64

pyglm-2.8.2-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyglm-2.8.2-cp310-cp310-win32.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86

pyglm-2.8.2-cp310-cp310-musllinux_1_2_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

pyglm-2.8.2-cp310-cp310-musllinux_1_2_i686.whl (11.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

pyglm-2.8.2-cp310-cp310-musllinux_1_2_aarch64.whl (11.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

pyglm-2.8.2-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

pyglm-2.8.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (11.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

pyglm-2.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyglm-2.8.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (11.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pyglm-2.8.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyglm-2.8.2-cp310-cp310-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyglm-2.8.2-cp310-cp310-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyglm-2.8.2-cp39-cp39-win_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows ARM64

pyglm-2.8.2-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyglm-2.8.2-cp39-cp39-win32.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86

pyglm-2.8.2-cp39-cp39-musllinux_1_2_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

pyglm-2.8.2-cp39-cp39-musllinux_1_2_i686.whl (11.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

pyglm-2.8.2-cp39-cp39-musllinux_1_2_aarch64.whl (11.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

pyglm-2.8.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (11.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

pyglm-2.8.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (10.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

pyglm-2.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyglm-2.8.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (10.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pyglm-2.8.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyglm-2.8.2-cp39-cp39-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyglm-2.8.2-cp39-cp39-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file pyglm-2.8.2.tar.gz.

File metadata

  • Download URL: pyglm-2.8.2.tar.gz
  • Upload date:
  • Size: 584.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyglm-2.8.2.tar.gz
Algorithm Hash digest
SHA256 b4847b0b60888b5c649b17b0a72d1f3f1ee07086cd5f431a7d977fad3cdbadab
MD5 06399953018df839bc4cbc79e783224f
BLAKE2b-256 e1199e9871a2cc8b3c26e57525a3233a5d75c4198c6cc7d63b62059b805fe531

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp313-cp313-win_arm64.whl.

File metadata

  • Download URL: pyglm-2.8.2-cp313-cp313-win_arm64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.13, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyglm-2.8.2-cp313-cp313-win_arm64.whl
Algorithm Hash digest
SHA256 a200ec556f31a1936aefc88baa4cd7e01d011ae83a250f74876548247e1c5add
MD5 a5f69c84ceb86e344b6952b4e036cf32
BLAKE2b-256 5d9b68e2449c5a9db968f3efe138d68df0ad387774c0f3b60f361b5b270ccc9c

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pyglm-2.8.2-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyglm-2.8.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 6a492dc524f3bffb27c47d9fc62afc690379ea311f1b9543487efe3869a3e1ae
MD5 5c488811e8d3d026a31f47f5ee9f71d7
BLAKE2b-256 c6c023445245d9dbbc3ff8c45061f6c9b5dd679a53604b38026e11a3df193ff2

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp313-cp313-win32.whl.

File metadata

  • Download URL: pyglm-2.8.2-cp313-cp313-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyglm-2.8.2-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 9cf869167f18251a554fbf54b2f65af31803a428a2b6e46b975b429a0e973ff8
MD5 a91a15b92116ea663edd53dd341f2e7b
BLAKE2b-256 dd54f10d9e95c98b2806e898a81755c447efc81983b62d1a5e4501419b902173

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 24957473986f26e907e17734e25761cee32475476a071976049b9b86aaad30ed
MD5 c60b9b581e99fc6104f1027bf9378cb9
BLAKE2b-256 7860125c09cceb467497e8fe76b3a3dc8c7d312a5a526a5b899ffa0139b7992f

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 01db79724c736846105162b9cb89c1a9262fd5b3a87239e06dbb977e83f071ce
MD5 2329371ae7f2fe621fc72c9caf7e2a22
BLAKE2b-256 80b22c3b9335c8ccfb8e22a5ada7d843cd8b49851cc2a7542adfe5c313f1a18a

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 402c0a4de35cc55ef9b27a463abcc3d8ff0fe5a6a3cc1b2d403c9d554e7dae0e
MD5 cf60ea316b3d3ad3d9484f7ef15ead3a
BLAKE2b-256 fb31dbd0458b23faaff1ba6954da9cd4fb29346800eaf1f0be0f2d07490f5edc

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 77f6b401007d5babbc6a328cb85b6d23f180e37f1a44b4516d8274f48acae0cf
MD5 1f89edf7201cb49e68a239507684e0b9
BLAKE2b-256 573e1f93ceeccc7dfda62668a23746068b97481cd0ec9b3f28400a2d1123a557

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 fa2d1511b7b04cb0a69c09f75d0b7f649c7809d3a3462abdc6745dd212b956a1
MD5 bab04fad28ae80e6839eaa6f08f21959
BLAKE2b-256 f2239884bb40767483760cb35190a2fbca7ed1f85879fb10aaa2f03fa4542805

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e69b938f6de1679a7ad5019ee3896cb4aec9dde90c617bef8a7d0d718a1f1e4d
MD5 b8d90d4b186b5e160cfc936ddbaa2a30
BLAKE2b-256 ae93d858c4111491199b7176dfe27f035bbecfa0a88f2d2543695a803e9730e3

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 094bd832748ca0f2a21b4fb20752a98e1d85353bdb7526c51ce9d3c08a23991a
MD5 354515ad7f5e8cefc3761296d254884b
BLAKE2b-256 e2c6532ae80542c189651ae447c13d675c0fec9220435db4a98964fd97ed81ed

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a46be69db5fb3421cb49cb0eb18080db62cb6f38322ab50ceac126f341128ad1
MD5 fabf052241b7a35515b5d27d88b9d932
BLAKE2b-256 11c14ddac0b22ab212944a6e310e86adc8a68db5232f026e63453edef7ffc6b8

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d9cd5b3189e6f78a8095e33e4f22b274c16a468dd074169efcfee4711ccb6c9a
MD5 235fc4bb7ca1501081eb75bcda96d6cc
BLAKE2b-256 72a66dacd84e4fdb1a91139a475a59733e011dd7b4f26c873144c42ff0b01562

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a3c3f67f229f22b37a7076e36fd432795935cc1db25b7e133ae0ca1f7a9cbbb5
MD5 dae4cad5c77848acd081b1170c1ffab5
BLAKE2b-256 7ee79a6e796eae5ff4810750e5e31e949527381d547b76ee06faad08d7fbf0b1

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: pyglm-2.8.2-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyglm-2.8.2-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 db87fa313e341ef527b5376633b241e6f5ba4deb28feb8f19f11c9396fd88a42
MD5 b227ab0accf82775675367d49f3a9378
BLAKE2b-256 d4efa3c53dd7eca7e0c552555f9744708a3566b0c2b86572a2cdb3cd824e19d3

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyglm-2.8.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyglm-2.8.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 7968f3b047ee9b8d5ab8707c81371015f523385480a1bfe73eaf3d6e39e74db7
MD5 db620d8591f52970718891290f30f83f
BLAKE2b-256 d2e23657590a0c67062476ce4948b7db25f6acb615f910728f5c7ba10a8e0e9a

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: pyglm-2.8.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyglm-2.8.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 b6ec9dc9e12a4e1d2cb2c91656e59eb1f30309b2882e6e354ce437ff5f7610f3
MD5 85d0eaadfe35e052a083a97f6d287692
BLAKE2b-256 70f00030756d96047d04ba541ff7ff9bbeb04d027067d58d0720a5e61e3b3003

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7e9d895e6697ff318b8c9b80dde957744cbfbeb0d22e61fce64906a3fe1f4bff
MD5 ba397b11c76b73fddb6b9e4b984dbca7
BLAKE2b-256 8699a1b5d3f8e660f6ed68906231e5a32e3cfbfaceda7b7f8d900c633660b81d

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 aa4168a8332116f8c8cd353b908eb96ccc7c5824dda0e44e072e623612f0e202
MD5 4193b60611efeb9cf248c47015f96952
BLAKE2b-256 a5c53933fd9d48ea6830f997f5cbeba94ac254544cc9c6840c8a4c0c0bc30645

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3271dca306c17d5ba70820125424fba5b4a5d3d3ea5b2a9d28a468bb86ee8e15
MD5 07588179c450a12bef75ea0dc26a7027
BLAKE2b-256 75d37aadea7c9ebb08d5c91567e355d9545549a0baeab6ebe5c3af465ddf3f0b

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3a0765a4ed676431627541a4561b36fa95b01823a488f291141de48f412e44b7
MD5 fba984576f2d5d543126e3365884fee0
BLAKE2b-256 8efa483e7a5586e0eb5ffc7e07cc76afa47839fcb11563e86e4298aa67a66ed7

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 40f088c4e5287c565d9295895feead6b747a0ddbada91088e18383737b328fed
MD5 00a21ad2d52ae5a819152864190e35ff
BLAKE2b-256 ea535d0410d1c4bce24f4689d5a7ea2208f264ce7c555db6a1d2b94e0ef718be

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad5f6b40f391bf7b4fd5256b4153ff955ef497638fa24bec0d21bac27a210947
MD5 0b2c885f17514693740c32e177aabac9
BLAKE2b-256 06ba18314b4e82a1d8af3434cf146df1500888b7d69e3810f214f4d8d6bf3bb1

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 edbc51eef30a79019649669c0d98d9295f6e370570a7767426aaa8452d5b9d46
MD5 7ec031a23cb8ded8b6b91cbfec836fa4
BLAKE2b-256 20245b854fd170a8edcf2ca71d8cac4b9634dfde5763fab54fa178cac4292cee

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c90c07472602952dbd9f7f745c1212fa73fbb8913af02b70a2d3f04ee5afd3e7
MD5 c62992e793bdb4cf87dbef74c6bb6dc4
BLAKE2b-256 1a7b36751a2e787f157e537222a2a460fc2ca52ae8368292dd9c98ca078e0ead

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5692aa3940ce1351c7963203d29ceb051a2f83a0721b2796cb18860f01dafc7e
MD5 377be281af7200b422f117af65601200
BLAKE2b-256 c84854d27e2528bfd728b568a66c4a6db357306daa9c12127d57ae28e26932ea

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 cd1adae33ea6c50ec057eb9701dda913459207f942484263f0d9c3b813b660c2
MD5 fa46c9aea547be05077539dd3af596ef
BLAKE2b-256 2ed0565bbf8e4d252bd562c7e9032dcb1980821e96a027b142d85089ef7c1d24

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: pyglm-2.8.2-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyglm-2.8.2-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 a336a0ff105c3254888b7e4c517bbd166e77bdeb78c73ee7de23c30877c3a288
MD5 281d2c102011c65c6ee8aaeb278315f7
BLAKE2b-256 ac9a071058504080a08fb5133a7563e7c98ce78dd3ed3d53f49ee8b610c8bbdf

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyglm-2.8.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyglm-2.8.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 21eaff3e1d330762a92ae4e5fcf894ae0067f962c836c321e87e0a6175ec1890
MD5 fafeda59520606e305a26021b10fea4e
BLAKE2b-256 86371b88ca644e9fcb2e2e3b6691bfa38b28667e3fd66040beeb99be77d921db

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyglm-2.8.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyglm-2.8.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 58d42a43e22b9224cd3daaf7888b438ad07e183d750ad77fc62020b6b8b2928d
MD5 28ffc41cc309877efc6f08b450dfd672
BLAKE2b-256 749a28562061f572eea67dd693de0e2e2b19ebbb91c3119ad889d7924092a6ca

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e65ad1b5415d5f60a13a2c23335d60638630ec89c87bafa744fa10e8364e06c5
MD5 44d149fe76a9ad9702b82ab60402800c
BLAKE2b-256 d0311fcbb65ec5f36bf116456f52722c19d5f02ecf4e59d50df6a8ed4f7fdaf4

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 7d7c62b6d9d51ff13dfff50f297fdb1a2166d8a51f29d80e401c9d764840a4af
MD5 d0e04cab715af2321ce5ea76c40adfe4
BLAKE2b-256 51822775cac1135016609745a3f7825514f18544372dff7f769c9392d498bb79

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 0821176a57d6d1c9c03085b86bfc13686d4cf814ebdaedcff540b7af292c7738
MD5 452078c9249d44f2ac4b35a7275a1bc4
BLAKE2b-256 c8a740a1f926ac70d0afd1af21e620bdd1af9dd1ec8d2d63e659586456f67bc3

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 cc99d62edec14f8ee120546667d48275b5b0d11f5ace283051ad81e9f1d4de19
MD5 f90d59cccaa8913490232fa7d6afa11e
BLAKE2b-256 aa174a09396c294629d39f3de1782255e056e957a17eb7c924dbd2efac4b61d3

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e2798ac14fcade4211f0b7fece3c567c6b5e401c0e221b4ea1d0b4bb47c50f77
MD5 0504085dd21dd6cd89d9f59b85eeb178
BLAKE2b-256 069c7c5386b3e918cad3702337d8fce493cf9cfa1b977048e50f5e9ec01e8203

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 082767061cd1181c01dc8f49945ea68699d0bfe940afb52bbed9c0e101572827
MD5 4b65e54fd59e370216b67a4ac8366685
BLAKE2b-256 be4b0f1681839555b1da470821155b64d2ea07287b67395cd194c8c6c96dd524

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8094dc6c51eaac28720ef7ec6bbaadca9c6afe494cb95848cb0bce95e0314145
MD5 f0e17636975117ceb15a85d13f524a81
BLAKE2b-256 e0a8751cf31146b667ea17f455c6c0f33b81e814103b907ef331c475b951ec16

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cf4230800140b2d440b04bde290e1f8b61290aeebea7ab4680d939322a582686
MD5 ba9d80542263150c123ea4fb9de9f71c
BLAKE2b-256 56ace4655af8b902a81f46bf2be90868329d65af612ceaa40ee4a67f4f979089

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0ac466ba49155fda6ea9c3e0ba459071eafd398ee5b54562ddd57c7862ae946c
MD5 d8879c0319e015bc8a5832f8b7d437c1
BLAKE2b-256 a15ffa4fc632e48fce1101071262e3213609329f0e5e91dfbaed5e4629c186c8

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e238e52a6bc62cbbd1b9a73e613b5ee32a8c525158d0f0cb04f98cd456ddbed1
MD5 4d21ea620b35b096c894aba1b3213d67
BLAKE2b-256 b0b3e48c3015010ac524e97a6cf23da813bac4f0381def579aedc4055ceba378

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: pyglm-2.8.2-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyglm-2.8.2-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 0c4576bb2c1d7f71c483204d9b2cbb7e456c1e74dc0714bb3a51af1d18b66907
MD5 6fdd7f31fab39e7de060bbbe65bd9aac
BLAKE2b-256 de907ddacc18454aa049a4401de556a59d8ceba0031875a7717a8fbd9d922811

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyglm-2.8.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyglm-2.8.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 37974f2a434075cfa2b6435cb6dcbbff151aa6a5bc3aae6b2d323f2920cfb071
MD5 243be971870920092a618fa74939e6ef
BLAKE2b-256 abb27ad1f5ccffe2d3aad6209732586987b3d924c702d45ca2e815bfe503914f

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyglm-2.8.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyglm-2.8.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 8d7492729bb1861eb9cc895d124d0e42b2d40d033b0367f2fcea2b8ac3c28fe0
MD5 0d39f355866a77229edc1620a7ea54f8
BLAKE2b-256 32f8817ad2057bdef9bca89ef9a6775cc7b0d10fdbce902b32bc3a6e36d4ceb0

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 60342a40b780d2f9f686a5e03f4351dff9c3fe33b923f06fec043c9c0bbaaa7c
MD5 b2866b5b48dafc5b66b8d547e142daab
BLAKE2b-256 8dcab3142d0a42b67db85f60db4226ae6279fb770192cc66ff6e74cc58562864

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 793aae3aa1b09ed8400cda48f2ca640041c4ac2748f38e97925dac56f28ec6fb
MD5 5944f7cfa35514be2eac27965abec4e6
BLAKE2b-256 6eb5c0457e40395fae9c2c725d803c1e4b66acb338fd948d20ff20ec7f9f458c

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e78fb7f1e76c5c736494ac68f7ff71358e6b8b23d9f7ab2b51eccec33d1fe736
MD5 8e3b928076ffcf1ed460a102432f9b22
BLAKE2b-256 a242b1d15504bf0a25b1710de363962ba7d6aa03ed4b8588e98d0ad05980df13

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a2853b06dd820c6b431e6d7296e7e13fb82066396bf3c76451a97e5c346b529e
MD5 10617dff82cb6409dce579cee3068324
BLAKE2b-256 7c27e957bbace3f303c6dcc21390fde3b9cccc2b264040877550cb56c313c0d8

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 13543a5516f74cb6634ed76f69097e4d47a4f5197ffb9876938ed755bdf0a167
MD5 2f81dac37ad8047ed5df1015720288b6
BLAKE2b-256 117e5d2018180bdee6f2973c197862c5aaffcb197f85d5c6adc52de6245ab27c

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b9a577a70e9b3f364d8a567405811dea939c64ecba310bc7faa1b349034a7e7
MD5 eac3a0f8993580407d20bc5948a29b18
BLAKE2b-256 8de528b20fbaca69022a7ab6cd8e0e58b47741a5fee41ce2e755012046c03b4d

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f63cf23c8ad08607d5723d9e72d2b5f6de5e59ab440645358349ea150449290e
MD5 0731ed686edee5e7a43f984d6cdf2c0a
BLAKE2b-256 31357d9c00a87269253f337947aa82827c70d859cfaea0ce3a7528e5c53d73db

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9727328d3844ca105d96adc7e99036f00a2b50d82c0071d4f49206abdb6c27da
MD5 1754c343f15d5fddf670424e3eee200a
BLAKE2b-256 dd84ec3321cbb451a8cf07c170587ff40ca349bd5e2dceec05a1d2a195685c37

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 37e43503a3f8c4750dae84f2eab5198c78a38a9ba2b607935f9a0a9e8802a08a
MD5 c777a90e94147a3fa897b7c6f0f5bbd0
BLAKE2b-256 6db46ef9861d683fbce7be5a672a715ca39b5597ae6f7d5fffca737b0495a00d

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8cadb5f66c30654e8292e87c737081ff8bf2bbb15f10d73fc3e2abf005cededd
MD5 79bd5ecc12a2eefe8aa773339f70ca38
BLAKE2b-256 033861dc44ffea30788e2310bf979ad9dee194038af4f69de8f437143219504a

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: pyglm-2.8.2-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyglm-2.8.2-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 018e2ca131c935b6fa147ec39c15f5d3936890ada43645cca4f208ccc4410188
MD5 4b3397c14057e16892ab5f166c66c761
BLAKE2b-256 f751a96397d08de1a4b936f1c87172043fac0a6d2a8ae8d87bb3da16fc57269f

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyglm-2.8.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyglm-2.8.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 859f68e70a52e7e042d53636b96d36a28be63965aa8429ac43c009eaf5640040
MD5 d7533f8d4ee0497ee8bc26df5e8d2eca
BLAKE2b-256 41ae0ed713722177dc945ce3d10e12ad86d80574f909b6ade0aeb407d6b0dcf3

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyglm-2.8.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for pyglm-2.8.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 a3ccd42dc7417c6c223b58feb085bbd723cc7ba42acc95b7561ebbaf5b26601c
MD5 7a74b5ff80a3353fc09a780c2d7bc495
BLAKE2b-256 929b382bcd79bb7311ac5e6218827fe23bfce05e792f21ec28d96ec0f40e5a25

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 65e94ce6451e688e64099f2c7d81a1ca3e299de6c1a4bb993b869b23a44aeb73
MD5 506c37d2437939c62e30c4206f71b41d
BLAKE2b-256 914f1e8bc8ae977aa3949eb22389d1a9f5bf9a8fea4611e0cd83998ce757c315

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 d09e8304414e5c1b4a9540215d6221925f896c0bdc1b5cc003e4b8c699209642
MD5 37c2c33db4119c10a1b0348a57d00f66
BLAKE2b-256 ad1357b3dea486db1772801773c252e541ba1b70147e57f18f5caf861b38777c

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 865aaa996345239499e7ad6f8b9cd7e2411c55e4719d0dc91ea20fdea810080b
MD5 7b66fb51872db94c116f4cbb16735d8d
BLAKE2b-256 5f087b1c4847e6981752c28a4b0fbead1f6cd24ef278d487642e58e564a20b9a

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a3ec5b90f9ba6ef151d1a46f8a1e3026c0a55b6f78629d468e0b7e3580184013
MD5 973ed3178db50d3b62b26e9667b642a3
BLAKE2b-256 8a26d6ceb35e9df3d9ca5d67a28a787d46849046dd42f2c27bcd4aa48cc27599

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 cb7d3299fd72af27bcc1647c266efb0e259e2625a5a44be50019348d3099c361
MD5 523ec293428ff7c1185160e51d01eb03
BLAKE2b-256 a42a71f831298019af86b832204d2a8260229b565b658fb7b0f84ca639243b3f

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5965c6c06272105be0e59897394d351c4fcf8d5bc1023efdbc9a3e70a0c92dcb
MD5 e094b68a5087b71fa180bb841bf26d83
BLAKE2b-256 53b7817d9938b343747843df6da64bcd598c8e384e29b81285e1ce2d29886ef1

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 295069ceda113996305ea126f50100f7b34c28580b41b5d10d008569bddd480a
MD5 640c287a49f54b4059f5b36e84ef467d
BLAKE2b-256 8f6037904b7371e9f11f795c14f36c2b09aded801f5edcfa1992e2c704d170e3

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cb842b8ab216c8152e5166052f770f1e3c218aee577022dd0297f83c0ff00411
MD5 dc2d939da37e403bec905b469101d1a7
BLAKE2b-256 d5d4d80b7990da15e12000f8d67f93b956bc3b9e9d45fe4a037124959fc31bc2

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3e5d429c42d9fdcffa7d3aef62cdac668470793a30945ce7353722958ea89e5d
MD5 4d30c71ceaa26112728f32275c212007
BLAKE2b-256 21934a48ba2e201ed35dff5f366ee58be2e07999bb1aeaec0ef9ab3cd379a9df

See more details on using hashes here.

File details

Details for the file pyglm-2.8.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyglm-2.8.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bbff6b56779d456833e1af966af1739802f2ab7de02d66296a03231dc9034318
MD5 48d9b6cb8b66c3af9c56e2bf0f080350
BLAKE2b-256 6d0f0afeb162251cd4608efd6b592411b521b7351fdcee3fdec847a4d6d8f347

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page