Skip to main content

A framework for transforming tabular (CSV, SQL) and hierarchical data (JSON, XML) into property graphs and ingesting them into graph databases (ArangoDB, Neo4j, TigerGraph). Features automatic PostgreSQL schema inference.

Project description

GraFlo graflo logo

A framework for transforming tabular (CSV, SQL) and hierarchical data (JSON, XML) into property graphs and ingesting them into graph databases (ArangoDB, Neo4j, TigerGraph, FalkorDB, Memgraph).

⚠️ Package Renamed: This package was formerly known as graphcast.

Python PyPI version PyPI Downloads License: BSL pre-commit DOI

Core Concepts

Property Graphs

graflo works with property graphs, which consist of:

  • Vertices: Nodes with properties and optional unique identifiers
  • Edges: Relationships between vertices with their own properties
  • Properties: Both vertices and edges may have properties

Schema

The Schema defines how your data should be transformed into a graph and contains:

  • Vertex Definitions: Specify vertex types, their properties, and unique identifiers
    • Fields can be specified as strings (backward compatible) or typed Field objects with types (INT, FLOAT, STRING, DATETIME, BOOL)
    • Type information enables better validation and database-specific optimizations
  • Edge Definitions: Define relationships between vertices and their properties
    • Weight fields support typed definitions for better type safety
  • Resource Mapping: describe how data sources map to vertices and edges
  • Transforms: Modify data during the casting process
  • Automatic Schema Inference: Generate schemas automatically from PostgreSQL 3NF databases

Resources

Resources are your data sources that can be:

  • Table-like: CSV files, database tables
  • JSON-like: JSON files, nested data structures

Features

  • Graph Transformation Meta-language: A powerful declarative language to describe how your data becomes a property graph:
    • Define vertex and edge structures with typed fields
    • Set compound indexes for vertices and edges
    • Use blank vertices for complex relationships
    • Specify edge constraints and properties with typed weight fields
    • Apply advanced filtering and transformations
  • Typed Schema Definitions: Enhanced type support throughout the schema system
    • Vertex fields support types (INT, FLOAT, STRING, DATETIME, BOOL) for better validation
    • Edge weight fields can specify types for improved type safety
    • Backward compatible: fields without types default to None (suitable for databases like ArangoDB)
  • 🚀 PostgreSQL Schema Inference: Automatically generate schemas from PostgreSQL 3NF databases - No manual schema definition needed!
    • Introspect PostgreSQL schemas to identify vertex-like and edge-like tables
    • Automatically map PostgreSQL data types to graflo Field types (INT, FLOAT, STRING, DATETIME, BOOL)
    • Infer vertex configurations from table structures with proper indexes
    • Infer edge configurations from foreign key relationships
    • Create Resource mappings from PostgreSQL tables automatically
    • Direct database access - ingest data without exporting to files first
  • Parallel processing: Use as many cores as you have
  • Database support: Ingest into ArangoDB, Neo4j, TigerGraph, FalkorDB, and Memgraph using the same API (database agnostic). Source data from PostgreSQL and other SQL databases.
  • Server-side filtering: Efficient querying with server-side filtering support (TigerGraph REST++ API)

Documentation

Full documentation is available at: growgraph.github.io/graflo

Installation

pip install graflo

Usage Examples

Simple ingest

from suthing import FileHandle

from graflo import Schema, Caster, Patterns
from graflo.db.connection.onto import ArangoConfig

schema = Schema.from_dict(FileHandle.load("schema.yaml"))

# Option 1: Load config from docker/arango/.env (recommended)
conn_conf = ArangoConfig.from_docker_env()

# Option 2: Load from environment variables
# Set: ARANGO_URI, ARANGO_USERNAME, ARANGO_PASSWORD, ARANGO_DATABASE
conn_conf = ArangoConfig.from_env()

# Option 3: Load with custom prefix (for multiple configs)
# Set: USER_ARANGO_URI, USER_ARANGO_USERNAME, USER_ARANGO_PASSWORD, USER_ARANGO_DATABASE
user_conn_conf = ArangoConfig.from_env(prefix="USER")

# Option 4: Create config directly
# conn_conf = ArangoConfig(
#     uri="http://localhost:8535",
#     username="root",
#     password="123",
#     database="mygraph",  # For ArangoDB, 'database' maps to schema/graph
# )
# Note: If 'database' (or 'schema_name' for TigerGraph) is not set,
# Caster will automatically use Schema.general.name as fallback

from graflo.util.onto import FilePattern
import pathlib

# Create Patterns with file patterns
patterns = Patterns()
patterns.add_file_pattern(
    "work",
    FilePattern(regex="\Sjson$", sub_path=pathlib.Path("./data"), resource_name="work")
)

# Or use resource_mapping for simpler initialization
# patterns = Patterns(
#     _resource_mapping={
#         "work": "./data/work.json",
#     }
# )

schema.fetch_resource()

from graflo.caster import IngestionParams

caster = Caster(schema)

ingestion_params = IngestionParams(
    clean_start=False,  # Set to True to wipe existing database
    # max_items=1000,  # Optional: limit number of items to process
    # batch_size=10000,  # Optional: customize batch size
)

caster.ingest(
    output_config=conn_conf,  # Target database config
    patterns=patterns,  # Source data patterns
    ingestion_params=ingestion_params,
)

PostgreSQL Schema Inference

from graflo.db.postgres import PostgresConnection
from graflo.db.inferencer import infer_schema_from_postgres
from graflo.db.connection.onto import PostgresConfig
from graflo import Caster
from graflo.onto import DBFlavor

# Connect to PostgreSQL
postgres_config = PostgresConfig.from_docker_env()  # or PostgresConfig.from_env()
postgres_conn = PostgresConnection(postgres_config)

# Infer schema from PostgreSQL 3NF database
schema = infer_schema_from_postgres(
    postgres_conn,
    schema_name="public",  # PostgreSQL schema name
    db_flavor=DBFlavor.ARANGO  # Target graph database flavor
)

# Close PostgreSQL connection
postgres_conn.close()

# Use the inferred schema with Caster
caster = Caster(schema)
# ... continue with ingestion

Development

To install requirements

git clone git@github.com:growgraph/graflo.git && cd graflo
uv sync --dev

Tests

Test databases

Quick Start: To start all test databases at once, use the convenience scripts from the docker folder:

cd docker
./start-all.sh    # Start all services
./stop-all.sh      # Stop all services
./cleanup-all.sh   # Remove containers and volumes

Individual Services: To start individual databases, navigate to each database folder and run:

Spin up Arango from arango docker folder by

docker-compose --env-file .env up arango

Neo4j from neo4j docker folder by

docker-compose --env-file .env up neo4j

TigerGraph from tigergraph docker folder by

docker-compose --env-file .env up tigergraph

FalkorDB from falkordb docker folder by

docker-compose --env-file .env up falkordb

and Memgraph from memgraph docker folder by

docker-compose --env-file .env up memgraph

To run unit tests

pytest test

Note: Tests require external database containers (ArangoDB, Neo4j, TigerGraph, FalkorDB, Memgraph) to be running. CI builds intentionally skip test execution. Tests must be run locally with the required database images started (see Test databases section above).

Requirements

  • Python 3.11+ (Python 3.11 and 3.12 are officially supported)
  • python-arango
  • sqlalchemy>=2.0.0 (for PostgreSQL and SQL data sources)

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

graflo-1.4.2.tar.gz (196.2 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

graflo-1.4.2-py3-none-any.whl (232.4 kB view details)

Uploaded Python 3

File details

Details for the file graflo-1.4.2.tar.gz.

File metadata

  • Download URL: graflo-1.4.2.tar.gz
  • Upload date:
  • Size: 196.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.8.14

File hashes

Hashes for graflo-1.4.2.tar.gz
Algorithm Hash digest
SHA256 7752725cef2645d6e3e84e7578012f843687b3f58f44efcb7d7159e854a1d657
MD5 144f4b8789477df9e5591fd0a19d8410
BLAKE2b-256 a40d58a9d64c068597ae7001507ccbeccaed0af14364a34a137e5fcf71cfc496

See more details on using hashes here.

File details

Details for the file graflo-1.4.2-py3-none-any.whl.

File metadata

  • Download URL: graflo-1.4.2-py3-none-any.whl
  • Upload date:
  • Size: 232.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.8.14

File hashes

Hashes for graflo-1.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 02969539cfc2ea6b11e2fcdae68c6be060eae982128eb3c83eb22846c449538b
MD5 fc6867d7562b5a2a046e32b47c733f63
BLAKE2b-256 3154055237335bd466305c5bbb5b007ecabe3274d381b57a306c92ab59467577

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page