Skip to main content

A Python library for Lara's API.

Project description

Lara Python SDK

Python Version License

This SDK empowers you to build your own branded translation AI leveraging our translation fine-tuned language model.

All major translation features are accessible, making it easy to integrate and customize for your needs.

🌍 Features:

  • Text Translation: Single strings, multiple strings, and complex text blocks
  • Document Translation: Word, PDF, and other document formats with status monitoring
  • Translation Memory: Store and reuse translations for consistency
  • Glossaries: Enforce terminology standards across translations
  • Language Detection: Automatic source language identification
  • Advanced Options: Translation instructions and more

📚 Documentation

Lara's SDK full documentation is available at https://developers.laratranslate.com/

🚀 Quick Start

Installation

pip install lara-sdk

Basic Usage

import os
from lara_sdk import Credentials, Translator

# Set your credentials using environment variables (recommended)
credentials = Credentials(
  os.environ.get('LARA_ACCESS_KEY_ID'),
  os.environ.get('LARA_ACCESS_KEY_SECRET')
)

# Create translator instance
lara = Translator(credentials)

# Simple text translation
try:
  result = lara.translate("Hello, world!", target="fr-FR", source="en-US")
  print(f"Translation: {result.translation}")
  # Output: Translation: Bonjour, le monde !
except Exception as error:
  print(f"Translation error: {error}")

📖 Examples

The examples/ directory contains comprehensive examples for all SDK features.

All examples use environment variables for credentials, so set them first:

export LARA_ACCESS_KEY_ID="your-access-key-id"
export LARA_ACCESS_KEY_SECRET="your-access-key-secret"

Text Translation

  • text_translation.py - Complete text translation examples
    • Single string translation
    • Multiple strings translation
    • Translation with instructions
    • TextBlocks translation (mixed translatable/non-translatable content)
    • Auto-detect source language
    • Advanced translation options
    • Get available languages
cd examples
python text_translation.py

Document Translation

  • document_translation.py - Document translation examples
    • Basic document translation
    • Advanced options with memories and glossaries
    • Step-by-step translation with status monitoring
cd examples
python document_translation.py

Translation Memory Management

  • memories_management.py - Memory management examples
    • Create, list, update, delete memories
    • Add individual translations
    • Multiple memory operations
    • TMX file import with progress monitoring
    • Translation deletion
    • Translation with TUID and context
cd examples
python memories_management.py

Glossary Management

  • glossaries_management.py - Glossary management examples
    • Create, list, update, delete glossaries
    • CSV import with status monitoring
    • Glossary export
    • Glossary terms count
    • Import status checking
cd examples
python glossaries_management.py

Language Detection

  • language_detection.py - Language detection examples
    • Single string detection
    • Multiple strings detection
    • Detection with hint parameter
    • Detection with passlist to restrict languages
    • Combined hint and passlist
cd examples
python language_detection.py

🔧 API Reference

Core Components

🔐 Authentication

The SDK supports authentication via access key and secret:

from lara_sdk import Credentials, Translator

credentials = Credentials("your-access-key-id", "your-access-key-secret")
lara = Translator(credentials)

Environment Variables (Recommended):

export LARA_ACCESS_KEY_ID="your-access-key-id"
export LARA_ACCESS_KEY_SECRET="your-access-key-secret"
import os
from lara_sdk import Credentials

credentials = Credentials(
    os.environ['LARA_ACCESS_KEY_ID'],
    os.environ['LARA_ACCESS_KEY_SECRET']
)

Alternative Constructor:

# You can also pass credentials directly to Translator
lara = Translator(
    access_key_id="your-access-key-id",
    access_key_secret="your-access-key-secret"
)

🌍 Translator

# Create translator with credentials
lara = Translator(credentials)

Text Translation

# Basic translation
result = lara.translate("Hello", target="fr-FR", source="en-US")

# Multiple strings
result = lara.translate(["Hello", "World"], target="fr-FR", source="en-US")

# TextBlocks (mixed translatable/non-translatable content)
from lara_sdk import TextBlock

text_blocks = [
    TextBlock(text="Translatable text", translatable=True),
    TextBlock(text="<br>", translatable=False),  # Non-translatable HTML
    TextBlock(text="More translatable text", translatable=True)
]
result = lara.translate(text_blocks, target="fr-FR", source="en-US")

# With advanced options

result = lara.translate(
    "Hello",
    target="fr-FR",
    source="en-US",
    instructions=["Formal tone"],
    adapt_to=["memory-id"],  # Replace with actual memory IDs
    glossaries=["glossary-id"],  # Replace with actual glossary IDs
    style="fluid",
    timeout_ms=10000
)

📖 Document Translation

Simple document translation

translated_content = lara.documents.translate(
    file_path="/path/to/your/document.txt",  # Replace with actual file path
    filename="document.txt",
    source="en-US",
    target="fr-FR"
)

# With options
translated_content = lara.documents.translate(
    file_path="/path/to/your/document.txt",  # Replace with actual file path
    filename="document.txt",
    source="en-US",
    target="fr-FR",
    adapt_to=["mem_1A2b3C4d5E6f7G8h9I0jKl"],  # Replace with actual memory IDs
    glossaries=["gls_1A2b3C4d5E6f7G8h9I0jKl"],  # Replace with actual glossary IDs
    style="fluid"
)

Document translation with status monitoring

Document upload

#Optional: upload options
document = lara.documents.upload(
    file_path="/path/to/your/document.txt",  # Replace with actual file path
    filename="document.txt",
    source="en-US",
    target="fr-FR",
    adapt_to=["mem_1A2b3C4d5E6f7G8h9I0jKl"],  # Replace with actual memory IDs
    glossaries=["gls_1A2b3C4d5E6f7G8h9I0jKl"]  # Replace with actual glossary IDs
)

Document translation status monitoring

status = lara.documents.status(document.id)

Download translated document

translated_content = lara.documents.download(document.id)

🧠 Memory Management

# Create memory
memory = lara.memories.create("MyMemory")

# Create memory with external ID (MyMemory integration)
memory = lara.memories.create("Memory from MyMemory", external_id="aabb1122")  # Replace with actual external ID

# Important: To update/overwrite a translation unit you must provide a tuid. Calls without a tuid always create a new unit and will not update existing entries.
# Add translation to single memory
memory_import = lara.memories.add_translation("mem_1A2b3C4d5E6f7G8h9I0jKl", "en-US", "fr-FR", "Hello", "Bonjour", tuid="greeting_001")

# Add translation to multiple memories
memory_import = lara.memories.add_translation(["mem_1A2b3C4d5E6f7G8h9I0jKl", "mem_2XyZ9AbC8dEf7GhI6jKlMn"], "en-US", "fr-FR", "Hello", "Bonjour", tuid="greeting_002")

# Add with context
memory_import = lara.memories.add_translation(
    "mem_1A2b3C4d5E6f7G8h9I0jKl", "en-US", "fr-FR", "Hello", "Bonjour", 
    tuid="tuid", sentence_before="sentenceBefore", sentence_after="sentenceAfter"
)

# TMX import from file
memory_import = lara.memories.import_tmx("mem_1A2b3C4d5E6f7G8h9I0jKl", "/path/to/your/memory.tmx")  # Replace with actual TMX file path

# Delete translation
# Important: if you omit tuid, all entries that match the provided fields will be removed
delete_job = lara.memories.delete_translation(
  "mem_1A2b3C4d5E6f7G8h9I0jKl", "en-US", "fr-FR", "Hello", "Bonjour", tuid="greeting_001"
)

# Wait for import completion
completed_import = lara.memories.wait_for_import(memory_import, max_wait_time=300)  # 5 minutes

📚 Glossary Management

# Create glossary
glossary = lara.glossaries.create("MyGlossary")

# Import CSV from file
glossary_import = lara.glossaries.import_csv("gls_1A2b3C4d5E6f7G8h9I0jKl", "/path/to/your/glossary.csv")  # Replace with actual CSV file path

# Check import status
import_status = lara.glossaries.get_import_status(import_id)

# Wait for import completion
completed_import = lara.glossaries.wait_for_import(glossary_import, max_wait_time=300)  # 5 minutes

# Export glossary
csv_data = lara.glossaries.export("gls_1A2b3C4d5E6f7G8h9I0jKl", "csv/table-uni", "en-US")

# Get glossary terms count
counts = lara.glossaries.counts("gls_1A2b3C4d5E6f7G8h9I0jKl")

🌐 Language Detection

# Basic language detection
result = lara.detect("Hello, world!")
print(f"Detected language: {result.language}")
print(f"Content type: {result.content_type}")

# Detect multiple strings
result = lara.detect(["Hello", "Bonjour", "Hola"])

# Detection with hint
result = lara.detect("Hello", hint="en")

# Detection with passlist (restrict to specific languages)
result = lara.detect(
    "Guten Tag",
    passlist=["de-DE", "en-US", "fr-FR"]
)

# Combined hint and passlist
result = lara.detect(
    "Buongiorno",
    hint="it",
    passlist=["it-IT", "es-ES", "pt-PT"]
)

Translation Options

result = lara.translate(
    text,
    target="fr-FR",                          # Target language (required)
    source="en-US",                          # Source language (optional, auto-detect if None)
    source_hint="en",                        # Hint for source language detection
    adapt_to=["memory-id"],                  # Memory IDs to adapt to
    glossaries=["glossary-id"],              # Glossary IDs to use
    instructions=["instruction"],            # Translation instructions
    style="fluid",                           # Translation style (fluid, faithful, creative)
    content_type="text/plain",               # Content type (text/plain, text/html, etc.)
    multiline=True,                          # Enable multiline translation
    timeout_ms=10000,                        # Request timeout in milliseconds
    no_trace=False,                          # Disable request tracing
    verbose=False,                           # Enable verbose response
)

Language Codes

The SDK supports full language codes (e.g., en-US, fr-FR, es-ES) as well as simple codes (e.g., en, fr, es):

# Full language codes (recommended)
result = lara.translate("Hello", target="fr-FR", source="en-US")

# Simple language codes
result = lara.translate("Hello", target="fr", source="en")

🌐 Supported Languages

The SDK supports all languages available in the Lara API. Use the languages() method to get the current list:

languages = lara.languages()
print(f"Supported languages: {', '.join(languages)}")

⚙️ Configuration

Error Handling

The SDK provides detailed error information:

from lara_sdk import LaraApiError, LaraError

try:
    result = lara.translate("Hello", target="fr-FR", source="en-US")
    print(f"Translation: {result.translation}")
except LaraApiError as error:
    print(f"API Error [{error.status_code}]: {error.message}")
    print(f"Error type: {error.type}")
except LaraError as error:
    print(f"SDK Error: {error}")
except Exception as error:
    print(f"Unexpected error: {error}")

📋 Requirements

  • Python 3.8 or higher
  • pip
  • Valid Lara API credentials

🧪 Testing

Run the examples to test your setup.

# All examples use environment variables for credentials, so set them first:
export LARA_ACCESS_KEY_ID="your-access-key-id"
export LARA_ACCESS_KEY_SECRET="your-access-key-secret"
# Run basic text translation example
cd examples
python text_translation.py

🏗️ Building from Source

# Clone the repository
git clone https://github.com/translated/lara-python.git
cd lara-python

# Install in development mode
pip install -e .

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

Happy translating! 🌍✨

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lara_sdk-1.5.0.tar.gz (16.1 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

lara_sdk-1.5.0-py3-none-any.whl (13.8 kB view details)

Uploaded Python 3

File details

Details for the file lara_sdk-1.5.0.tar.gz.

File metadata

  • Download URL: lara_sdk-1.5.0.tar.gz
  • Upload date:
  • Size: 16.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for lara_sdk-1.5.0.tar.gz
Algorithm Hash digest
SHA256 fa983330c14b87feefdffb2f50fcde9ec092a56117aa977158870ae982ea63df
MD5 9d78ea545f47cd517524d76e902b9630
BLAKE2b-256 ad920305ffd571e2a73de58283b6369c99c8bff2ea1129a38d5b415e39dbbb16

See more details on using hashes here.

Provenance

The following attestation bundles were made for lara_sdk-1.5.0.tar.gz:

Publisher: publish-to-pypi.yml on translated/lara-python

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file lara_sdk-1.5.0-py3-none-any.whl.

File metadata

  • Download URL: lara_sdk-1.5.0-py3-none-any.whl
  • Upload date:
  • Size: 13.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for lara_sdk-1.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6fe6df0db7d528c3dd4c0dbe7de201e7a4cc326f44885c10942c2d995d11ae07
MD5 1e2e9d1b97350dad1522e346f989081d
BLAKE2b-256 7648b82b3b30dfe4231809fb7d58a33483d7a657e1501f221d347cbc6998144a

See more details on using hashes here.

Provenance

The following attestation bundles were made for lara_sdk-1.5.0-py3-none-any.whl:

Publisher: publish-to-pypi.yml on translated/lara-python

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page