Skip to main content

Python Fractal Generation is a package for generating aesthetic fractal images quickly and (hopefully) easily

Project description

Authors

  • Ryther Anderson

Description

Python Fractal Generation is a package for making interesting/aesthetic fractal images quickly (for Python) and (hopefully) easily. Many unique fractal images can be generated using only a few functions.

Installation

pyfracgen can currently be installed from the following sources (if you want to install from GH, probably do so using poetry).

Git

git clone https://github.com/rytheranderson/pyfracgen.git
cd pyfracgen
poetry install

PyPI

pip install pyfracgen

Example Images

All the package functions can be accessed from a single import:

import pyfracgen as pf
from matplotlib import pyplot as plt
from matplotlib import colormaps

Mandelbrot Set

Image produced with this code:

# x and y bounds, x is the real part and y is the imaginary part
xbound = (
    0.3602404434376143632361252444495 - 0.00000000000003,
    0.3602404434376143632361252444495 + 0.00000000000025,
)
ybound = (
    -0.6413130610648031748603750151793 - 0.00000000000006,
    -0.6413130610648031748603750151793 + 0.00000000000013,
)
res = pf.mandelbrot(
    xbound, ybound, pf.funcs.power, width=4, height=3, dpi=300, maxiter=5000
)
stacked = pf.images.get_stacked_cmap(colormaps["gist_gray"], 50)
pf.images.image(res, cmap=stacked, gamma=0.8)
plt.savefig("example_images/mandelbrot_ex.png")

Julia Set Animation

Animation produced with this code:

import itertools as itt

reals = itt.chain(np.linspace(-1, 2, 60)[0:-1],  np.linspace(2, 3, 40))
series = pf.julia(
    (complex(real, 0.75) for real in reals),
    xbound=(-1, 1),
    ybound=(-0.75, 1.25),
    update_func=pf.funcs.magnetic_2,
    maxiter=300,
    width=5,
    height=4,
    dpi=200,
)
pf.images.save_animation(
    list(series),
    cmap=colormaps["ocean"],
    gamma=0.6,
    file=Path("example_images/julia_animation_ex"),
)

Markus-Lyapunov Fractal

Image produced with this code:

string = "AAAAAABBBBBB"
xbound = (2.5, 3.4)
ybound = (3.4, 4.0)
res = pf.lyapunov(
    string, xbound, ybound, width=4, height=3, dpi=300, ninit=2000, niter=2000
)
pf.images.markus_lyapunov_image(
    res, colormaps["bone"], colormaps["bone_r"], gammas=(8, 1)
)
plt.savefig("example_images/lyapunov_ex.png")

Random Walk

Image produced with this code:

moves = pf.construct_moves((1, 0), (0, 1))
res = pf.randomwalk(moves, niter=1000000, width=4, height=3, dpi=300)
pf.images.image(res, cmap=colormaps["gnuplot"], gamma=1.0)
plt.savefig("example_images/randomwalk_ex.png")

Buddhabrot with Nebula Coloring

Image produced with this code:

xbound = (-1.75, 0.85)
ybound = (-1.10, 1.10)
res = pf.buddhabrot(
    xbound,
    ybound,
    ncvals=10000000,
    update_func=pf.funcs.power,
    horizon=1.0e6,
    maxiters=(100, 1000, 10000),
    width=4,
    height=3,
    dpi=300,
)
pf.images.nebula_image(tuple(res), gamma=0.4)  # type: ignore[arg-type]
plt.savefig("example_images/buddhabrot_ex.png")

Fractal "Types" Supported

  • Mandelbrot
  • Julia
  • Buddhabrot
  • Markus-Lyapunov
  • 2D random walks

Image Creation

  • Function image wrapping matplotlib.pyplot.imshow
  • Function nebula_image for Buddhabrot "nebula" coloration
  • Function markus_lyapunov_image for Markus-Lyapunov coloration
  • Function save_animation for animating a sequence of results

More than Quadratic Polynomials

Mandelbrot, Julia, and Buddhabrot fractal images are almost always created by iterating the function $f_c(z) = z^2 + c$. Makes sense, since this function is part of the definition of the Mandelbrot set. However, you can iterate lots of other functions to produce similarly striking images: see the iterfuncs module of pyfracgen for a few examples.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfracgen-0.3.0.tar.gz (10.3 kB view hashes)

Uploaded Source

Built Distribution

pyfracgen-0.3.0-py3-none-any.whl (15.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page