Skip to main content

Execute microservice endpoint using HTTP REST

Project description

4logik python rest client

Utility package to call an enpoint generated by 4Logik

Installation

Use pip

pip install 4logik-python-rest-client

How to call a CSV endpoint

  • Locate the input CSV file
  • Identify the URL of the enpoint
  • Identify the name of the data set of the response that contains the results

Example of using the package:

from py4logik_python_rest_client.endpoint_caller import call_csv_endpoint, call_csv_endpoint_read_data_set

# input parameters
input_csv_file = "/home/user1/incomingData.csv"
endpoint_url = "http://myOrganization.myDeployedService.com/RiskCalulationProcess"

# call the endpoint
received_json_data = call_csv_endpoint(ms_url, input_csv_file)
print(received_json_data)

The result will contain useful metadata like the quantity of business exceptions and the list of data sets which you can print using:

print(received_json_data["data_sets_names"])
print(received_json_data["data_sets_results"])

To read the specific rows of a data set, call the method "call_csv_endpoint_read_data_set" sending the name of the data set, like this:

specific_data_set_name_to_read = "ReportResult"
data_set_result_rows = call_csv_endpoint_read_data_set(ms_url, input_csv_file, specific_data_set_name_to_read)
print(data_set_result_rows)

Example using the package inside Jupyter and converting the result to a data frame:

import json
import pandas as pd
import tempfile

from py4logik_python_rest_client.endpoint_caller import call_csv_endpoint_read_data_set

# input parameters
input_csv_file = "/home/user1/incomingData.csv"
endpoint_url = "http://myOrganization.myDeployedService.com/RiskCalulationProcess"
dataset_name = "riskResult"

# call the endpoint
received_json_data = call_csv_endpoint_read_data_set(ms_url, input_csv_file, dataset_name)

# now convert the received json to panda
temp_file = tempfile.NamedTemporaryFile(delete=False)
output_json = temp_file.name

with open(output_json,'w', encoding='UTF_8') as f:
    f.write(json.dumps(received_json_data))
    f.close()

final_data_frame = pd.read_json(output_json)

final_data_frame

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

4logik-python-rest-client-1.0.4.tar.gz (4.0 kB view details)

Uploaded Source

File details

Details for the file 4logik-python-rest-client-1.0.4.tar.gz.

File metadata

  • Download URL: 4logik-python-rest-client-1.0.4.tar.gz
  • Upload date:
  • Size: 4.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10

File hashes

Hashes for 4logik-python-rest-client-1.0.4.tar.gz
Algorithm Hash digest
SHA256 bcd136a8d509e30f7bd830d56124513403fab78a9120a615b98fadf2eb9ef537
MD5 8aaae862560de7301849b8223e0b4fb1
BLAKE2b-256 9e53f4685d5e8d52a0d9895f159ff3e021a25cc30b8d3fb884904857358c1e33

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page