Execute microservice endpoint using HTTP REST
Project description
4logik python rest client
Utility package to call an enpoint generated by 4Logik
Installation
Use pip
pip install 4logik-python-rest-client
How to call a CSV endpoint
- Locate the input CSV file
- Identify the URL of the enpoint
- Identify the name of the data set of the response that contains the results
Example of using the package:
from py4logik_python_rest_client.endpoint_caller import call_csv_endpoint, call_csv_endpoint_read_data_set
# input parameters
input_csv_file = "/home/user1/incomingData.csv"
endpoint_url = "http://myOrganization.myDeployedService.com/RiskCalulationProcess"
# call the endpoint
received_json_data = call_csv_endpoint(ms_url, input_csv_file)
print(received_json_data)
The result will contain useful metadata like the quantity of business exceptions and the list of data sets which you can print using:
print(received_json_data["data_sets_names"])
print(received_json_data["data_sets_results"])
To read the specific rows of a data set, call the method "call_csv_endpoint_read_data_set" sending the name of the data set, like this:
specific_data_set_name_to_read = "ReportResult"
data_set_result_rows = call_csv_endpoint_read_data_set(ms_url, input_csv_file, specific_data_set_name_to_read)
print(data_set_result_rows)
Example using the package inside Jupyter and converting the result to a data frame:
import json
import pandas as pd
import tempfile
from py4logik_python_rest_client.endpoint_caller import call_csv_endpoint_read_data_set
# input parameters
input_csv_file = "/home/user1/incomingData.csv"
endpoint_url = "http://myOrganization.myDeployedService.com/RiskCalulationProcess"
dataset_name = "riskResult"
# call the endpoint
received_json_data = call_csv_endpoint_read_data_set(ms_url, input_csv_file, dataset_name)
# now convert the received json to panda
temp_file = tempfile.NamedTemporaryFile(delete=False)
output_json = temp_file.name
with open(output_json,'w', encoding='UTF_8') as f:
f.write(json.dumps(received_json_data))
f.close()
final_data_frame = pd.read_json(output_json)
final_data_frame
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file 4logik-python-rest-client-1.0.4.tar.gz
.
File metadata
- Download URL: 4logik-python-rest-client-1.0.4.tar.gz
- Upload date:
- Size: 4.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bcd136a8d509e30f7bd830d56124513403fab78a9120a615b98fadf2eb9ef537 |
|
MD5 | 8aaae862560de7301849b8223e0b4fb1 |
|
BLAKE2b-256 | 9e53f4685d5e8d52a0d9895f159ff3e021a25cc30b8d3fb884904857358c1e33 |