Skip to main content

Tools for statistical analysis of A/B test results

Project description

Tools for statistical analysis of A/B test results.

ABBA provides several statistical tools for analysis of binomial data, typically resulting from A/B tests:

  • Wald and Agresti-Coull confidence intervals on binomial proportions
  • Confidence intervals on the difference and ratio of two binomial proportions
  • Hypothesis tests for inequality of two binomial proportions
  • Multiple test correction for control of familywise error rate

Some simple example usage:

>>> import abba.stats
>>> abba.stats.confidence_interval_on_proportion(
...     num_successes=50, num_trials=200, confidence_level=0.99)
ValueWithInterval(value=0.25, lower_bound=0.17962262748069852, upper_bound=0.33643200973247306)

>>> experiment = abba.stats.Experiment(
...     num_trials=5, baseline_num_successes=50, baseline_num_trials=200)
>>> results = experiment.get_results(num_successes=70, num_trials=190)
>>> results.relative_improvement
ValueWithInterval(value=0.4736842105263157, lower_bound=-0.014130868125315277, upper_bound=0.90421878236700903)
>>> results.two_tailed_p_value
0.047886616311815511

ABBA requires SciPy for underlying statistical functions.

For more info, see the docstrings, unit tests, and the ABBA website (including an interactive Javascript version) at http://www.thumbtack.com/labs/abba/.

Project details


Release history Release notifications

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
ABBA-0.1.0.tar.gz (6.3 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page