Skip to main content

[IEEE JBHI] Reinventing 2D Convolutions for 3D Images

Project description

ACSConv

Reinventing 2D Convolutions for 3D Images (arXiv)

IEEE Journal of Biomedical and Health Informatics (IEEE JBHI), 2021 (DOI)

News:

  • 2022.01.26 - ACS ConvNeXt supported.
  • 2021.12.17 - torch 1.10 supported & pip installation supported.
  • 2021.4.19 - torch 1.8 supported.

Key contributions

  • ACS convolution aims at a plug-and-play replacement of standard 3D convolution, for 3D medical images.
  • ACS convolution enables 2D-to-3D transfer learning, which consistently provides significant performance boost in our experiments.
  • Even without pretraining, ACS convolution is comparable to or even better than 3D convolution, with smaller model size and less computation.

Package Installation

If you want to use this class, you have two options:

A) Install ACSConv as a standard Python package from PyPI:

pip install ACSConv

B) Simply copy and paste it in your project;

You could run the test.py to validate the installation. (If you want to test the validity of pip installation, please move this test.py file outside of this git project directory, otherwise it is testing the code inside the project instead of pip installation.)

Requirements

PyTorch requirements

torch>=1.0.0 and torch<=1.10.0

You can install it on the official homepage.

Other requirements

All libraries needed to run the included experiments (base requirements included).

fire
jupyterlab
matplotlib
pandas
tqdm
sklearn
tensorboardx

Code structure

  • acsconv the core implementation of ACS convolution, including the operators, models, and 2D-to-3D/ACS model converters.
    • operators: include ACSConv, SoftACSConv and Conv2_5d.
    • converters: include converters which convert 2D models to 3d/ACS/Conv2_5d counterparts.
    • models: Native ACS models.
  • experiments the scripts to run experiments.
    • mylib: the lib for running the experiments.
    • poc: the scripts to run proof-of-concept experiments.
    • lidc: the scripts to run LIDC-IDRI experiments.

Convert a 2D model into 3D with a single line of code

import torch
from torchvision.models import resnet18
from acsconv.converters import ACSConverter
# model_2d is a standard pytorch 2D model
model_2d = resnet18(pretrained=True)
B, C_in, H, W = (1, 3, 64, 64)
input_2d = torch.rand(B, C_in, H, W)
output_2d = model_2d(input_2d)

model_3d = ACSConverter(model_2d)
# once converted, model_3d is using ACSConv and capable of processing 3D volumes.
B, C_in, D, H, W = (1, 3, 64, 64, 64)
input_3d = torch.rand(B, C_in, D, H, W)
output_3d = model_3d(input_3d)

Usage of ACS operators

import torch
from acsconv.operators import ACSConv, SoftACSConv
B, C_in, D, H, W = (1, 3, 64, 64, 64)
x = torch.rand(B, C_in, D, H, W)
# ACSConv to process 3D volumnes
conv = ACSConv(in_channels=3, out_channels=10, kernel_size=3, padding=1)
out = conv(x)
# SoftACSConv to process 3D volumnes
conv = SoftACSConv(in_channels=3, out_channels=10, kernel_size=3, padding=1)
out = conv(x)

Usage of native ACS models

import torch
from acsconv.models.acsunet import ACSUNet
unet_3d = ACSUNet(num_classes=3)
B, C_in, D, H, W = (1, 1, 64, 64, 64)
input_3d = torch.rand(B, C_in, D, H, W)
output_3d = unet_3d(input_3d)

How to run the experiments

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ACSConv-0.1.1.tar.gz (15.8 kB view details)

Uploaded Source

File details

Details for the file ACSConv-0.1.1.tar.gz.

File metadata

  • Download URL: ACSConv-0.1.1.tar.gz
  • Upload date:
  • Size: 15.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for ACSConv-0.1.1.tar.gz
Algorithm Hash digest
SHA256 805a8525e2574a35238c91bc68463b6171591f7d5c7862c4d4cdfdaf293177eb
MD5 c32f70c7a45a39492e304a473b710cd0
BLAKE2b-256 00667cc7fbcdf41c8868b9a37bad697e192a74683a1944dcf102a1db65f16217

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page