Skip to main content

ACTIONet single-cell analysis framework

Project description

Installation

Setting Up the Environment (Preinstallation)

For Linux Users

Verify that the cmake version you are using is >=3.19.

For the optimal performance on Intel-based architectures, installing Intel Math Kernel Library (MKL) is highly recommended. After installing, make sure MKLROOT is defined by running the setvars script.

Install library dependencies To install the ACTIONet dependencie on debian-based linux machines, run:

sudo apt-get install libhdf5-dev libsuitesparse-dev libnss3 xvfb libblas-dev liblapack-dev cmake

Note: please use cmake>3.2 For Mac-based systems, you can use brew instead:

brew install hdf5 suite-sparse c-blosc blas lapack

Installing ACTIONet Python Package

Use pip to install ACTIONet directly from this repository:

pip install git+https://github.com/shmohammadi86/ACTIONet@python-devel

To install from source: git clone --recurse-submodules https://github.com/shmohammadi86/ACTIONet.git make install

Running ACTIONet

Note If you are using MKL, make sure to properly set the number of threads used prior to running ACTIONet.

Example Run

Here is a simple example to get you started:

import urllib.request

import ACTIONet as an
import scanpy as sc

# Download example dataset from the 10X Genomics website
opener = urllib.request.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
urllib.request.install_opener(opener)
urllib.request.urlretrieve('http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_10k_v3/pbmc_10k_v3_filtered_feature_bc_matrix.h5', 'pbmc_10k_v3.h5')

# Read and filter the data
adata = sc.read_10x_h5('pbmc_10k_v3.h5')
adata.var_names_make_unique(join='.')
an.pp.filter_adata(adata, min_cells_per_feature=0.01, min_features_per_cell=1000)
sc.pp.normalize_total(adata)
sc.pp.log1p(adata)

# Run ACTIONet
an.pp.reduce_kernel(adata)
an.run_ACTIONet(adata)

# Annotate cell-types
marker_genes, directions, names = an.tl.load_markers('PBMC_Monaco2019_12celltypes')
cell_labels, confidences, Z = an.tl.annotate_cells_using_markers(adata, marker_genes, directions, names)
adata.obs['celltypes'] = cell_labels

# Visualize output
an.pl.plot_ACTIONet(adata, 'celltypes', transparency_key='node_centrality')

# Export results
adata.write('pbmc_10k_v3.h5ad')

Visualizing results using cellxgene

The output of ACTIONet in the python implementation is internally stored as as AnnData object, and R ACE objects can be imported from/exported to AnnData using functions AnnData2ACE() and ACE2AnnData() functions, respectively. AnnData objects can be directly loaded into cellxgene package, an open-source viewer for interactive single-cell data visualization. cellxgene can be installed as:

pip install cellxgene

Then to visualize the results of ACTIONet, run:

cellxgene launch pbmc_10k_v3.h5ad

where pbmc_10k_v3.h5ad is the name of the file we exported using adata.write() function.

Additional tutorials

You can access ACTIONet tutorials from:

  1. ACTIONet framework at a glance (human PBMC 3k dataset)
  2. Introduction to the ACTIONet framework (human PBMC Granja et al. dataset)
  3. Introduction to cluster-centric analysis using the ACTIONet framework
  4. To batch correct or not to batch correct, that is the question!
  5. PortingData: Import/export options in the ACTIONet framework
  6. Interactive visualization, annotation, and exploration
  7. Constructing cell-type/cell-state-specific networks using SCINET

You can also find a step-by-step guide to learning the core functionalities of the ACTIONet framework.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ACTIONet-0.4.1.tar.gz (16.4 MB view details)

Uploaded Source

Built Distributions

ACTIONet-0.4.1-cp311-cp311-manylinux_2_35_x86_64.whl (57.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.35+ x86-64

ACTIONet-0.4.1-cp311-cp311-manylinux1_x86_64.whl (60.0 MB view details)

Uploaded CPython 3.11

ACTIONet-0.4.1-cp311-cp311-macosx_10_9_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

ACTIONet-0.4.1-cp310-cp310-manylinux_2_35_x86_64.whl (57.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.35+ x86-64

ACTIONet-0.4.1-cp310-cp310-manylinux_2_31_x86_64.whl (57.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ x86-64

ACTIONet-0.4.1-cp310-cp310-manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10

ACTIONet-0.4.1-cp310-cp310-macosx_10_9_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

ACTIONet-0.4.1-cp39-cp39-manylinux_2_35_x86_64.whl (57.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.35+ x86-64

ACTIONet-0.4.1-cp39-cp39-manylinux1_x86_64.whl (60.0 MB view details)

Uploaded CPython 3.9

ACTIONet-0.4.1-cp38-cp38-manylinux_2_35_x86_64.whl (57.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.35+ x86-64

ACTIONet-0.4.1-cp38-cp38-manylinux1_x86_64.whl (60.0 MB view details)

Uploaded CPython 3.8

ACTIONet-0.4.1-cp38-cp38-macosx_10_9_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file ACTIONet-0.4.1.tar.gz.

File metadata

  • Download URL: ACTIONet-0.4.1.tar.gz
  • Upload date:
  • Size: 16.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for ACTIONet-0.4.1.tar.gz
Algorithm Hash digest
SHA256 e20700c94285862178789e5f6f4e38c1578b3575ecd8ee6097943296bbe6bdce
MD5 a893ee23a17ca109ed7d2844c0773875
BLAKE2b-256 38ae6780f3d35072d60af2e0e6d8eae052121ebfa15ef7bdcd4393bb84e496b0

See more details on using hashes here.

File details

Details for the file ACTIONet-0.4.1-py3.11-macosx-10.9-x86_64.egg.

File metadata

File hashes

Hashes for ACTIONet-0.4.1-py3.11-macosx-10.9-x86_64.egg
Algorithm Hash digest
SHA256 477a67032da2bf30f631f40a0623ca3a83404c7546b1469f85a020390d62dd40
MD5 bad67685a0db13ce8b337f2b66b8c671
BLAKE2b-256 a1f19fa20cc9e434f18f058b1759f591768c4f870d209d2d7294465b37a5704f

See more details on using hashes here.

File details

Details for the file ACTIONet-0.4.1-py3.10-macosx-10.9-x86_64.egg.

File metadata

File hashes

Hashes for ACTIONet-0.4.1-py3.10-macosx-10.9-x86_64.egg
Algorithm Hash digest
SHA256 17fc8df436175f10247cb72458fd13a17eb980be6eac8f6d2d7f7402b27ea497
MD5 70c933802dad474ecf56db141b9c4983
BLAKE2b-256 0ba7b3f8b9198e122788f83e2822494137f10cdaac108b3c66ac1b5dc0c165d0

See more details on using hashes here.

File details

Details for the file ACTIONet-0.4.1-cp311-cp311-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for ACTIONet-0.4.1-cp311-cp311-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 569d2dff98d132d713a3489855e020e0a308154163dddafed224b05e0b67da2b
MD5 3f9aa11afcd00d214a32b62dea4b52ae
BLAKE2b-256 9903e0213312df8f149efb29bd372c1f009cac3ecd06cfb0f7e576312c7793c6

See more details on using hashes here.

File details

Details for the file ACTIONet-0.4.1-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for ACTIONet-0.4.1-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8cef6c81ca50e41f390c1976fa1d562c9a7dc65d64572f6aab2c43d0b39cb1c1
MD5 2b1a249d06a58be85b42a28459ee48e5
BLAKE2b-256 eb3ecf5bfdca0fdfb81cb62a63b0124af69dda9455d9dd01f9a84852fd6a3120

See more details on using hashes here.

File details

Details for the file ACTIONet-0.4.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ACTIONet-0.4.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5b52b42bf03a35c279d8aa90ae926034241ac9e981e5a24495681a925e5d9457
MD5 bf5832af338688d4c649b4f020617f11
BLAKE2b-256 13654deea05db5e9904247cbb16514045d5ff34b60304161f129ade510ee1711

See more details on using hashes here.

File details

Details for the file ACTIONet-0.4.1-cp310-cp310-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for ACTIONet-0.4.1-cp310-cp310-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 a12e5b32aa9b60c12f09399701e3904bb013865aaa6c40317086b51d69037795
MD5 4df022c6bf7149096607ee60a9de3e54
BLAKE2b-256 e04bfe0060746b80ca330bb98b7a371f9596e69fc7648fbc3557ebf454a51c48

See more details on using hashes here.

File details

Details for the file ACTIONet-0.4.1-cp310-cp310-manylinux_2_31_x86_64.whl.

File metadata

File hashes

Hashes for ACTIONet-0.4.1-cp310-cp310-manylinux_2_31_x86_64.whl
Algorithm Hash digest
SHA256 efbab513ac9a210fa1d9386171af44c827e05711b12310cbb482343851157a82
MD5 ffb923636c3c36ca63953ebee432fc3f
BLAKE2b-256 de9431aa91e431a825bef465028c67a3efe30a08be5c480e2837225be23d4ef6

See more details on using hashes here.

File details

Details for the file ACTIONet-0.4.1-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for ACTIONet-0.4.1-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1ccfc0ecf61d599e4093543689564388143a569a2576b7d6ff765f8daf3707da
MD5 2553ccd6554afae0eb121acf547cb491
BLAKE2b-256 0480518d6d1e764d21f86e8b029db7521e14fe833e8bbfb7e0759cb8baae51d5

See more details on using hashes here.

File details

Details for the file ACTIONet-0.4.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ACTIONet-0.4.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bd2392a5233851e4aabee6bfcae5c1ebd4be5538c64d91f6cd759f1e193fbd93
MD5 5987b4d973ce25ad160fcb8c9302a6ff
BLAKE2b-256 2cc1616433236399b6aea2a95b594dafac14347fa229525ccaa22a536cd85579

See more details on using hashes here.

File details

Details for the file ACTIONet-0.4.1-cp39-cp39-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for ACTIONet-0.4.1-cp39-cp39-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 b57dcfdf4877daddb4f5f4e5584e668b386480d19a12671884a5f3f60c718316
MD5 fa893f3ac0138bf73b87903e52f85921
BLAKE2b-256 ed7326288c7fec4c403efeeb2398a998e0b718ffc345fffa0add905c4d043d5f

See more details on using hashes here.

File details

Details for the file ACTIONet-0.4.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for ACTIONet-0.4.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b8dbaf9279c915dd856305e050da1194306da2bbb10cf3734dbbf4477982b308
MD5 6aec6c6421ddb11f8e06bb90504f85b2
BLAKE2b-256 39cdbac3ffd0885c39d88f616819085de2074627ea1c8897b6570cebf4ce8ec1

See more details on using hashes here.

File details

Details for the file ACTIONet-0.4.1-cp38-cp38-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for ACTIONet-0.4.1-cp38-cp38-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 1fc953a02db6d6ea80ba44e446a28457f1643fa74377d105407fa480d041eea3
MD5 5cb49a9cfb8a5988c923d531b10c87ff
BLAKE2b-256 e49528d588aa9bb77037fa65467df81c1f15dede806e743652e55b424004e8ee

See more details on using hashes here.

File details

Details for the file ACTIONet-0.4.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for ACTIONet-0.4.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5ca89303d26901342887414da84b1aa67ab51f48db9a57ee627b0f88ed357581
MD5 7d68fd9e35c4c27c701641785a110d2f
BLAKE2b-256 332f42ba33f0813dda0d3b8d4ae67274c81c0d7dfa2ff5f7f706c3d64bbafeec

See more details on using hashes here.

File details

Details for the file ACTIONet-0.4.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ACTIONet-0.4.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 85c89642b2bf3a1974c482d114bd6a33a1027c031f1ab5805bbec9b7d98263dc
MD5 f6cd074b9e0c981be5ed85a286bfbe87
BLAKE2b-256 9d5b7e0abefe123ed93b6a194304a5550ce25ebe1eef538b444cf1c0f9e95b3a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page