Skip to main content

A Python library of aircraft conceptual design tools.

Project description


Aircraft Design Recipes in Python

A library of aircraft conceptual design and performance analysis tools, including virtual (design) atmospheres, constraint analysis methods, propulsion system performance models, conversion functions and much else.

version number: 0.1.4

author: Andras Sobester

Installation / Usage

On most systems you should be able to simply open an operating system terminal and at the command prompt type

$ pip install ADRpy


$ python -m pip install ADRpy

NOTE: pip is a Python package; if it is not available on your system, download and run it in Python by entering

$ python

at the operating system prompt.

An alternative approach to installing ADRpy is to clone the GitHub repository, by typing

$ git clone

at the command prompt and then executing the setup file in the same directory by entering:

$ python install

A 'hello world' example: atmospheric properties

There are several options for running the examples shown here: you could copy and paste them into a .py file, save it and run it in Python, or you could enter the lines, in sequence, at the prompt of a Python terminal. You could also copy and paste them into a Jupyter notebook (.ipynb file) cell and execute the cell.

from ADRpy import atmospheres as at
from ADRpy import unitconversions as co

# Instantiate an atmosphere object: an ISA with a +10C offset
isa = at.Atmosphere(offset_deg=10)

# Query the ambient density in this model at 41,000 feet 
print("ISA+10C density at 41,000 feet (geopotential):", 
      isa.airdens_kgpm3(co.feet2m(41000)), "kg/m^3")

A design example: wing/powerplant sizing for take-off

# Compute the thrust to weight ratio required for take-off, given
# a basic design brief, a basic design definition and a set of 
# atmospheric conditions

from ADRpy import atmospheres as at
from ADRpy import constraintanalysis as ca
from ADRpy import unitconversions as co

# The environment: 'unusually high temperature at 5km' atmosphere
# from MIL-HDBK-310. 

# Extract the relevant atmospheric profiles...
profile_ht5_1percentile, _ = at.mil_hdbk_310('high', 'temp', 5)

# ...then use them to create an atmosphere object 
m310_ht5 = at.Atmosphere(profile=profile_ht5_1percentile)


# The take-off aspects of the design brief:
designbrief = {'rwyelevation_m':1000, 'groundrun_m':1200}

# Basic features of the concept:
# aspect ratio, engine bypass ratio, throttle ratio 
designdefinition = {'aspectratio':7.3, 'bpr':3.9, 'tr':1.05}

# Initial estimates of aerodynamic performance:
designperf = {'CDTO':0.04, 'CLTO':0.9, 'CLmaxTO':1.6,
              'mu_R':0.02} # ...and wheel rolling resistance coeff.

# An aircraft concept object can now be instantiated
concept = ca.AircraftConcept(designbrief, designdefinition,
                             designperf, m310_ht5)


# Compute the required standard day sea level thrust/MTOW ratio reqd.
# for the target take-off performance at a range of wing loadings:
wingloadinglist_pa = [2000, 3000, 4000, 5000]

tw_sl, liftoffspeed_mpstas, _ = concept.twrequired_to(wingloadinglist_pa)

# The take-off constraint calculation also supplies an estimate of
# the lift-off speed; this is TAS (assuming zero wind) - we convert 
# it to equivalent airspeed (EAS), in m/s:
liftoffspeed_mpseas = \
m310_ht5.tas2eas(liftoffspeed_mpstas, designbrief['rwyelevation_m'])

print("Required T/W and V_liftoff under MIL-HDBK-310 conditions:")
print("\nT/W (std. day, SL, static thrust):", tw_sl)
print("\nLiftoff speed (KEAS):", co.mps2kts(liftoffspeed_mpseas))

A complete example: wing/powerplant sizing for a single engine prop

View the single engine prop example as a Jupyter notebook on nbviewer (click on the binder icon in the top right corner for of the nbviewer page for an editable, 'live', online version of the notebook).

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
ADRpy-0.1.4-py2.py3-none-any.whl (979.9 kB) Copy SHA256 hash SHA256 Wheel py2.py3
ADRpy-0.1.4.tar.gz (956.1 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page