CRUD operations on nested SQLAlchemy ORM-models using Pydantic
Project description
sqlalchemy-pydantic-orm
This library makes it a lot easier to do nested database operation with SQLAlchemy. With this library it is for example possible to validate, convert, and upload a 100-level deep nested JSON (dict) to its corresponding tables in a given database, within 3 lines of code.
Pydantic is used for creating the
dataclass and validating it. Pydantic already has a function called
.from_orm()
that can do a nested get operation, but it only supports ORM -> Pydantic and
not Pydantic -> ORM. That's exactly where this library fills in, with 2
specific functions .orm_create()
and .orm_update()
, and one general
function .to_orm()
that combines the functionality of the first 2, calling
one or the other, depending on if there is an id provided.
Requirements
- Python 3.8+
- SQLAlchemy 1.4+
- Pydantic 1.8+
Installation
$ pip install AFAS-pydantic-orm
To tinker with the code yourself, install the full dependencies with:
$ pip install AFAS-pydantic-orm[dev]
Useful references
- https://pydantic-docs.helpmanual.io/usage/models/
- https://fastapi.tiangolo.com/tutorial/sql-databases/
Examples
Below 1 example is provided (more coming).
For a bigger and more detailed example you can look at the /examples/ folder.
Example 1 - Using manual created schemas
Create your own Pydantic schemas and link them to the SQLAlchemy ORM-models.
Create your SQLAlchemy ORM-models (one-to-one or one-to-many)
class Parent(Base):
id = Column(Integer, primary_key=True, index=True, nullable=False)
name = Column(String, nullable=False)
car = relationship("Car", cascade="all, delete", uselist=False, back_populates="owner")
children = relationship("Child", cascade="all, delete")
class Car(Base):
id = Column(Integer, primary_key=True, index=True, nullable=False)
color = Column(String, nullable=False)
owner_id = Column(Integer, ForeignKey("parents.id"), nullable=False)
owner = relationship("Parent", back_populates="car")
class Child(Base):
id = Column(Integer, primary_key=True, index=True, nullable=False)
name = Column(String, nullable=False)
parent_id = Column(Integer, ForeignKey("parents.id"), nullable=False)
Create your Pydantic base and CRUD schemas using these ORM models, and the imported ORMBaseSchema
Base schemas
from sqlalchemy_pydantic_orm import ORMBaseSchema
from .models import Parent, Car, Child
class ParentBase(ORMBaseSchema):
name: str
_orm_model = PrivateAttr(Parent)
class CarBase(ORMBaseSchema):
color: str
_orm_model = PrivateAttr(models.Car)
class ChildBase(ORMBaseSchema):
name: str
_orm_model = PrivateAttr(models.Child)
GET schemas
class Parent(ParentBase):
id: int
children: List[Child]
car: Car
class Car(CarBase):
id: int
class Child(ChildBase):
id: int
CREATE/UPDATE schemas
class ParentCreate(ParentBase):
id: Optional[int]
children: List[ChildCreate]
car: CarCreate
class CarCreate(CarBase):
id: Optional[int]
class ChildCreate(ChildBase):
id: Optional[int]
Use your schemas to do nested CRUD operations.
with ConnectionDatabase() as db:
create_schema = schemas.ParentCreate.parse_obj(create_dict)
parent_db = create_schema.orm_create()
db.add(parent_db)
db.commit()
db_create_schema = schemas.Parent.from_orm(parent_db)
print(db_create_schema.dict())
update_schema = schemas.ParentUpdate.parse_obj(update_dict)
update_schema.to_orm(db)
db.commit()
db_update_schema = schemas.Parent.orm_update(parent_db)
print(db_update_schema.dict())
Note: with .orm_create()
you have to call db.add()
before calling db.commit()
.
With orm_update you give the db session as parameter,
and you only have to call db.commit()
.
Example 2 - Using generated schemas
TODO: Integrate with https://github.com/tiangolo/pydantic-sqlalchemy
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file afas_pydantic_orm-1.0.0.tar.gz
.
File metadata
- Download URL: afas_pydantic_orm-1.0.0.tar.gz
- Upload date:
- Size: 9.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 879f484c30fe839185192cd8e6ae4450c04891e32e832f6051a80c22eede8e50 |
|
MD5 | fb20fc0088021479d9c05f65b6bdbf01 |
|
BLAKE2b-256 | 3ff1f4b2fb0f4df489aad50d0a65a600f51034986367035ed2f3edbe32cdbaf3 |