Artificial Neural Networks architect
Project description
ANNarchy
ANNarchy (Artificial Neural Networks architect) is a parallel and hybrid simulator for distributed rate-coded or spiking neural networks. The core of the library is written in C++ and distributed using openMP or CUDA. It provides an interface in Python for the definition of the networks. It is released under the GNU GPL v2 or later.
- Source code: github.com/ANNarchy/ANNarchy
- Documentation: annarchy.github.io
- Forum: google forum
- Bug reports and feature requests: Issue Tracker.
Citation
If you use ANNarchy for your research, we would appreciate if you cite the following paper:
Vitay J, Dinkelbach HÜ and Hamker FH (2015). ANNarchy: a code generation approach to neural simulations on parallel hardware. Frontiers in Neuroinformatics 9:19. doi:10.3389/fninf.2015.00019
Authors
- Julien Vitay (julien.vitay@informatik.tu-chemnitz.de).
- Helge Ülo Dinkelbach (helge-uelo.dinkelbach@informatik.tu-chemnitz.de).
- Fred Hamker (fred.hamker@informatik.tu-chemnitz.de).
Installation
Using pip, you can install the latest stable release:
pip install ANNarchy
See https://annarchy.github.io/Installation for further instructions.
Platforms
- GNU/Linux
- MacOS X
- Windows (inside WSL2)
Dependencies
python
>= 3.10 (with the development files, e.g.python-dev
orpython-devel
)g++
>= 7.4 orclang++
>= 3.4cmake
>= 3.16setuptools
>= 65.0cython
>= 3.0numpy
>= 1.21sympy
>= 1.11scipy
>= 1.9matplotlib
>= 3.0tqdm
>= 4.60
Recommended:
lxml
(to save the networks in.xml
format).h5py
(to export data in.h5
format).pandoc
(forreport()
).tensorflow
(for theann_to_snn_conversion
extension)tensorboardX
(for thelogging
extension).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file annarchy-4.8.2.tar.gz
.
File metadata
- Download URL: annarchy-4.8.2.tar.gz
- Upload date:
- Size: 505.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | eea5f69d2bdaf45211ec8271787ee99561909e762f16197048b69799eaf95eff |
|
MD5 | 8a319997af6dcdde2daae29d6e154a35 |
|
BLAKE2b-256 | d52aec877e73bc97324c131135af21c83f9d642645f7522fe61f94f8c7a24c75 |
Provenance
The following attestation bundles were made for annarchy-4.8.2.tar.gz
:
Publisher:
release.yml
on ANNarchy/ANNarchy
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
annarchy-4.8.2.tar.gz
- Subject digest:
eea5f69d2bdaf45211ec8271787ee99561909e762f16197048b69799eaf95eff
- Sigstore transparency entry: 150257059
- Sigstore integration time:
- Predicate type: