Skip to main content

ANU Inversion Course Package

Project description

ANU Inversion Course Package

Build PyPI version

This package contains resources to be used in the inversion course practicals.

Table of contents

Getting started

1. Pre-requisites

Before installing the ANU-inversion-course package, make sure you have the following ready:

  • A computer with a recent OS.
  • OS-specific dependencies including a system package manager:
    • For Linux users:
      1. Familiarise yourself with the linux system package manager apt / dnf / pacman / yast etc.
    • For MacOS users:
      1. Download and install Xcode from "App Store" (you'll need to create an Apple account if not already done)
      2. Install the Xcode command line tools by typing this in "Terminal": xcode-select --install; sudo xcodebuild -license; sudo softwareinstall -i -a
      3. Install a recent package manager e.g. one of Anaconda (https://www.anaconda.com/), MacPorts (https://www.macports.org/), HomeBrew (https://brew.sh/)
    • For Windows users:
      1. Install the Cygwin package manager (https://www.cygwin.com/)
  • Install git, gcc, g++, gfortran and python (3.6+) using the package manager. Use the package manager search facility to find options.
  • Install any other software development tools you want using the package manager.
  • If necessary add your package manager installation directory to the system PATH environment variable so installed programs can/will be found.

These tools can usually be downloaded in source form and compiled however this should only be necessary if you have an unusual setup. Don't be tempted by web sites that claim easy one step package installs, install a package manager. Package managers are far superior in almost every way.

2. Set up a python virtual environment [optional]

It's recommended to use a python virtual environment (e.g. venv, virtualenv, mamba or conda) so that ANU-Inversion-Course doesn't conflict with your other Python projects.

Open a terminal (or a Cygwin shell for Windows users) and refer to the cheat sheet below for how to create, activate, exit and remove a virtual environment. $ is the system prompt.

venv

Ensure you have and are using python >= 3.6. It may not be called python but something like python3, python3.10 etc.

Use the first two lines below to create and activate the new virtual environment. The other lines are for your future reference.

$ python -m venv <path-to-new-env>/inversion_course           # to create
$ source <path-to-new-env>/inversion_course/bin/activate      # to activate
$ deactivate                                                  # to exit
$ rm -rf <path-to-new-env>/inversion_course                   # to remove
virtualenv

Use the first two lines below to create and activate the new virtual environment. The other lines are for your future reference.

$ virtualenv <path-to-new-env>/inversion_course -p=3.10       # to create
$ source <path-to-new-env>/inversion_course/bin/activate      # to activate
$ deactivate                                                  # to exit
$ rm -rf <path-to-new-env>/inversion_course                   # to remove
mamba

Use the first two lines below to create and activate the new virtual environment. The other lines are for your future reference.

$ mamba create -n inversion_course python=3.10                # to create
$ mamba activate inversion_course                             # to activate
$ mamba deactivate                                            # to exit
$ mamba env remove -n inversion_course                        # to remove
conda

Use the first two lines below to create and activate the new virtual environment. The other lines are for your future reference.

$ conda create -n inversion_course python=3.10                # to create
$ conda activate inversion_course                             # to activate
$ conda deactivate                                            # to exit
$ conda env remove -n inversion_course                        # to remove

3. Installation

Type the following in your terminal (or Cygwin shell for Windows users):

$ pip install jupyterlab matplotlib anu-inversion-course

4. Check

And when you run jupyter-lab to do the practicals, make sure you are in the same environment as where your anu-inversion-course was installed. You can try to test this by checking if the following commands give you similar result:

$ which pip
<some-path>/bin/pip
$ which jupyter-lab
<same-path>/bin/jupyter-lab
$ pip list | grep ANU-inversion-course
ANU-inversion-course               0.1.0

Troubleshooting

If you find problems importing anu_inversion_course.rf, try to search for the error message you get. Here contains a nice explanation for one possible cause. And here is how to locate libgfortran:

gfortran --print-file-name libgfortran.5.dylib # macOS

Developer Notes

Check out NOTES.md if you'd like to contribute to this package.

  1. Getting started
  2. Cheatsheet
    1. conda environment
    2. git operations
    3. package development
    4. package metadata
    5. package building test & release
  3. Adding C/C++ extensions
  4. Adding Fortran extensions
  5. More references
  6. Appendix - semantic versioning
  7. Additional Notes about gfortran

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ANU_inversion_course-0.1.1.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

ANU_inversion_course-0.1.1-cp310-cp310-win_amd64.whl (180.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

ANU_inversion_course-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ANU_inversion_course-0.1.1-cp39-cp39-win_amd64.whl (180.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

ANU_inversion_course-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ANU_inversion_course-0.1.1-cp38-cp38-win_amd64.whl (180.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

ANU_inversion_course-0.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ANU_inversion_course-0.1.1-cp37-cp37m-win_amd64.whl (179.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

ANU_inversion_course-0.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

ANU_inversion_course-0.1.1-cp36-cp36m-win_amd64.whl (180.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

ANU_inversion_course-0.1.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file ANU_inversion_course-0.1.1.tar.gz.

File metadata

  • Download URL: ANU_inversion_course-0.1.1.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.18

File hashes

Hashes for ANU_inversion_course-0.1.1.tar.gz
Algorithm Hash digest
SHA256 716650456eb49923b5dd5af455d0809d956beadd3c7b5493a75bb9bcb8795829
MD5 56d064eb2db9280329df3dcb99b5453c
BLAKE2b-256 a804909d3edc449b9388db671b71061604b4edb8cd01c8d5ad2b3a47ac4e79ab

See more details on using hashes here.

File details

Details for the file ANU_inversion_course-0.1.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ANU_inversion_course-0.1.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fbd594521da4ae02df65867ab1ca9e702dad6ff5fc65a1e288641d1e70a32731
MD5 5b29988003036d50a1ec5ddd6fc7b199
BLAKE2b-256 c0c0ab0436ba7b48da7359491799abafbe286a184e66808a6992d5a17011a94f

See more details on using hashes here.

File details

Details for the file ANU_inversion_course-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ANU_inversion_course-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 353713959cfda4d5174797d96998e443df44528f936051706bcaa7e08b416850
MD5 f15087f4d8d4ac14765eaf2bb5499523
BLAKE2b-256 570c5b9e9a6252fbf08696e71e0ef3dd4f4d6e996b24ffd2a86e34e221a5c179

See more details on using hashes here.

File details

Details for the file ANU_inversion_course-0.1.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for ANU_inversion_course-0.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7f36adff6e25fa6672d4fcd27ca033946e68c6d7ea0eef81e47a4644cb2ece6a
MD5 6094c0fe3306f5d871118611055f6d5e
BLAKE2b-256 55debb0a36b192332cd69f3f1874ba8b5a0c4fba56f7812b207fb66f53e2009c

See more details on using hashes here.

File details

Details for the file ANU_inversion_course-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ANU_inversion_course-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2825f519696c29aa32fbe5a574cc85027077b0c733ed23b73899580d5791e928
MD5 e16cab6436cae9990f6531f0d797ac06
BLAKE2b-256 6bcba265d611c51b327b396049c1de824269698fb8405666d6d50457ec2d5b6e

See more details on using hashes here.

File details

Details for the file ANU_inversion_course-0.1.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for ANU_inversion_course-0.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 91a23089ec03d1a397703ce1b0439d801c56940f7ce247f434b220c58f49b8bb
MD5 e61c489a5725b94112d376ada260fc12
BLAKE2b-256 5ae134924af6933a483ecbaaaf6380bb1cafed38fcef8689b2ef53d158ccbf62

See more details on using hashes here.

File details

Details for the file ANU_inversion_course-0.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ANU_inversion_course-0.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bddad33fafec313848e287c6abb26a6a0433249a59dd7144bbee90a093fd6703
MD5 4bb748e5ee4fcd0efd69ace0117d7424
BLAKE2b-256 6715fd5ccc112ce3df2780fbca2c4616ddaa652929ad666e22bb06815faa7cc0

See more details on using hashes here.

File details

Details for the file ANU_inversion_course-0.1.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for ANU_inversion_course-0.1.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4456596c9cca2678edba2b3882698f82dc6bfebafcef80dcaca6aa689b7ff91d
MD5 366785d725d661a6d9abe0d2419ead5c
BLAKE2b-256 a265f035d8c2513db56411feff4da81eac9ed8bc8518c984f8527a3d454c86b9

See more details on using hashes here.

File details

Details for the file ANU_inversion_course-0.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ANU_inversion_course-0.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e3689373c49a3ce2e202d7d0ae39f2c9b4208810d38ec711af2b2edbb6e5bc01
MD5 14115d8863c4439d3d5f3581a1d20e2c
BLAKE2b-256 c5642853fedacb8d53b4e2186aa69843f039eab3c3600cc411032ac885ade9c3

See more details on using hashes here.

File details

Details for the file ANU_inversion_course-0.1.1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for ANU_inversion_course-0.1.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9a56cffd839484638969cd1225b727b79645d511ca5f8a0a07f85f50b1eae93e
MD5 50ea44a7ff860ddc4ff1e15f13c3a8a3
BLAKE2b-256 de73c6f0689933349d32d814afb3fbb704b8c925f073699406f064c27ae9302d

See more details on using hashes here.

File details

Details for the file ANU_inversion_course-0.1.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ANU_inversion_course-0.1.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5e37f65fd5030716df021da75fa1851091a7810c18bbc2baed17dfc1ffeef914
MD5 55dcc3f5df78f52bb016c0863c032bda
BLAKE2b-256 57748694b47f25bd7b5fa815deffd65889673f040dfdcb37bec25aaa28b3c942

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page