Skip to main content

A lightweight web API framework based on Flask and marshmallow-code projects.

Project description

APIFlask

Build status codecov

APIFlask is a lightweight Python web API framework based on Flask and marshmallow-code projects. It's easy to use, highly customizable, ORM/ODM-agnostic, and 100% compatible with the Flask ecosystem. It starts as a fork of APIFairy and is inspired by flask-smorest and FastAPI (see Comparison and Motivations for the comparison between these projects).

With APIFlask, you will have:

  • More sugars for view function (@input(), @output(), @app.get(), @app.post() and more)
  • Automatic request validation and deserialization (with Webargs)
  • Automatic response formatting and serialization (with Marshmallow)
  • Automatic OpenAPI Specification (OAS, formerly Swagger Specification) document generation (with APISpec)
  • Automatic interactive API documentation (with Swagger UI and Redoc)
  • API authentication support (with Flask-HTTPAuth)
  • Automatic JSON response for HTTP errors

Currently this project is in active development stage, bugs and breaking changes are expected. Welcome to leave any suggestions or feedbacks in this issue or just submit a pull request to improve it. Thank you!

Requirements

  • Python 3.7+
  • Flask 1.1.0+

Installation

For Linux and macOS:

$ pip3 install apiflask

For Windows:

> pip install apiflask

Links

Example

from apiflask import APIFlask, Schema, input, output, abort
from apiflask.fields import Integer, String
from apiflask.validators import Length, OneOf

app = APIFlask(__name__)

pets = [
    {
        'id': 0,
        'name': 'Kitty',
        'category': 'cat'
    },
    {
        'id': 1,
        'name': 'Coco',
        'category': 'dog'
    }
]


class PetInSchema(Schema):
    name = String(required=True, validate=Length(0, 10))
    category = String(required=True, validate=OneOf(['dog', 'cat']))


class PetOutSchema(Schema):
    id = Integer()
    name = String()
    category = String()


@app.get('/')
def say_hello():
    # returning a dict equals to use jsonify()
    return {'message': 'Hello!'}


@app.get('/pets/<int:pet_id>')
@output(PetOutSchema)
def get_pet(pet_id):
    if pet_id > len(pets) - 1:
        abort(404)
    # you can also return an ORM/ODM model class instance directly
    return pets[pet_id]


@app.put('/pets/<int:pet_id>')
@input(PetInSchema)
@output(PetOutSchema)
def update_pet(pet_id, data):
    # the parsed input data (dict) will be injected into the view function
    if pet_id > len(pets) - 1:
        abort(404)
    data['id'] = pet_id
    pets[pet_id] = data
    return pets[pet_id]
Click to see the same example with class-based views
from apiflask import APIFlask, Schema, input, output, abort
from apiflask.fields import Integer, String
from apiflask.validators import Length, OneOf
from flask.views import MethodView

app = APIFlask(__name__)

pets = [
    {
        'id': 0,
        'name': 'Kitty',
        'category': 'cat'
    },
    {
        'id': 1,
        'name': 'Coco',
        'category': 'dog'
    }
]


class PetInSchema(Schema):
    name = String(required=True, validate=Length(0, 10))
    category = String(required=True, validate=OneOf(['dog', 'cat']))


class PetOutSchema(Schema):
    id = Integer()
    name = String()
    category = String()


# use the "route" decorator to decorate the view class
@app.route('/')
class Hello(MethodView):

    # use HTTP method name as class method name
    def get(self):
        return {'message': 'Hello!'}


@app.route('/pets/<int:pet_id>')
class Pet(MethodView):

    @output(PetOutSchema)
    def get(self, pet_id):
        if pet_id > len(pets) - 1:
            abort(404)
        return pets[pet_id]

    @input(PetInSchema)
    @output(PetOutSchema)
    def put(self, pet_id, data):
        if pet_id > len(pets) - 1:
            abort(404)
        data['id'] = pet_id
        pets[pet_id] = data
        return pets[pet_id]
You can use async def from Flask 2.0

Flask 2.0 have the basic support for async and await, check it out with Flask 2.0.0rc:

$ pip install --pre flask[async]
from apiflask import APIFlask

app = APIFlask(__name__)

@app.get('/')
async def say_hello():
    return {'message': 'Hello!'}

See Using async and await to learn the details of the async support in Flask 2.0.

Save this as app.py, then run it with :

$ flask run --reload

Now visit the interactive API documentation (Swagger UI) at http://localhost:5000/docs:

Or you can visit the alternative API documentation (Redoc) at http://localhost:5000/redoc:

The auto-generated OpenAPI spec file is available at http://localhost:5000/openapi.json.

For a more complete example, see /examples.

Relationship with Flask

APIFlask is a thin wrapper on top of Flask, you only need to remember four differences (see Migrating from Flask for more details):

  • When creating an application instance, use APIFlask instead of Flask.
  • When creating a blueprint instance, use APIBlueprint instead of Blueprint.
  • The abort() function from APIFlask (apiflask.abort) returns JSON error response.
  • The view class should be registered with the route decorator.

For a minimal Flask application:

from flask import Flask, request, escape

app = Flask(__name__)

@app.route('/')
def hello():
    name = request.args.get('name', 'Human')
    return f'Hello, {escape(name)}'

Now change to APIFlask:

from apiflask import APIFlask  # step one
from flask import request, escape

app = APIFlask(__name__)  # step two

@app.route('/')
def hello():
    name = request.args.get('name', 'Human')
    return f'Hello, {escape(name)}'

In a word, to make Web API development in Flask more easily, APIFlask provides APIFlask and APIBlueprint to extend Flask's Flask and Blueprint objects, and it also ships with some helpful utilities. Other than that, you are actually using Flask.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

APIFlask-0.5.2.tar.gz (57.5 kB view details)

Uploaded Source

Built Distribution

APIFlask-0.5.2-py3-none-any.whl (40.7 kB view details)

Uploaded Python 3

File details

Details for the file APIFlask-0.5.2.tar.gz.

File metadata

  • Download URL: APIFlask-0.5.2.tar.gz
  • Upload date:
  • Size: 57.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.25.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.0

File hashes

Hashes for APIFlask-0.5.2.tar.gz
Algorithm Hash digest
SHA256 cfadb28953288288f51daa2235d6472efe3a9e652fe6f42639ab88404bf673a8
MD5 c56916ce67b2870f73cdb173b66f1d52
BLAKE2b-256 47acc06aa7a0680ac2073a836550de503eb73c1424a50f6267ec542cd7d661a9

See more details on using hashes here.

File details

Details for the file APIFlask-0.5.2-py3-none-any.whl.

File metadata

  • Download URL: APIFlask-0.5.2-py3-none-any.whl
  • Upload date:
  • Size: 40.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.25.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.0

File hashes

Hashes for APIFlask-0.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 671ff1cffc978452eb35ced87158826a606386150b75d7fe025b016b72a77382
MD5 dab87c353d63af7ccd784fc3e9126e1f
BLAKE2b-256 53fcac4ffbd3677d565a146033dc8a20c757f636bfdbaab159f2b5f45b230442

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page