Skip to main content

ARCCSS Data Archive Tools

Project description

# ARCCSSive
ARCCSS Data Access Tools

[![Documentation Status](https://readthedocs.org/projects/arccssive/badge/?version=latest)](https://readthedocs.org/projects/arccssive/?badge=latest)
[![Build Status](https://travis-ci.org/coecms/ARCCSSive.svg?branch=master)](https://travis-ci.org/coecms/ARCCSSive)
[![codecov.io](http://codecov.io/github/coecms/ARCCSSive/coverage.svg?branch=master)](http://codecov.io/github/coecms/ARCCSSive?branch=master)
[![Code Health](https://landscape.io/github/coecms/ARCCSSive/master/landscape.svg?style=flat)](https://landscape.io/github/coecms/ARCCSSive/master)
[![Code Climate](https://codeclimate.com/github/coecms/ARCCSSive/badges/gpa.svg)](https://codeclimate.com/github/coecms/ARCCSSive)
[![PyPI version](https://badge.fury.io/py/ARCCSSive.svg)](https://pypi.python.org/pypi/ARCCSSive)
[![Anaconda-Server Badge](https://anaconda.org/scottwales/arccssive/badges/version.svg)](https://anaconda.org/scottwales/arccssive)

For full documentation please see http://arccssive.readthedocs.org/en/stable

Installing
==========

### Raijin

The stable version of ARCCSSive is available as a module on NCI's Raijin supercomputer:

raijin $ module use ~access/modules
raijin $ module load pythonlib/ARCCSSive

### NCI Virtual Desktops

NCI's virtual desktops allow you to use ARCCSSive from a Jupyter notebook. For
details on how to use virtual desktops see http://vdi.nci.org.au/help

To install the stable version of ARCCSSive:

vdi $ pip install --user ARCCSSive
vdi $ export CMIP5_DB=sqlite:////g/data1/ua6/unofficial-ESG-replica/tmp/tree/cmip5_raijin_latest.db

or to install the current development version:

vdi $ pip install --user git+https://github.com/coecms/ARCCSSive.git
vdi $ export CMIP5_DB=sqlite:////g/data1/ua6/unofficial-ESG-replica/tmp/tree/cmip5_raijin_latest.db

Once the library is installed run `ipython notebook` to start a new notebook

CMIP5
=====

Query and access the CMIP5 data from Raijin

```python
from ARCCSSive import CMIP5

cmip = CMIP5.DB.connect()
for output in cmip.outputs(model='ACCESS1-0'):
variable = output.variable
files = output.filenames()
```

Uses
[SQLAlchemy](http://docs.sqlalchemy.org/en/rel_1_0/orm/tutorial.html#querying)
to filter and sort the data files.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for ARCCSSive, version 0.3.0
Filename, size File type Python version Upload date Hashes
Filename, size ARCCSSive-0.3.0-py2-none-any.whl (24.9 kB) File type Wheel Python version py2 Upload date Hashes View hashes
Filename, size ARCCSSive-0.3.0-py3-none-any.whl (24.9 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size ARCCSSive-0.3.0.tar.gz (51.3 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page