ARCCSS Data Archive Tools
Project description
# ARCCSSive
ARCCSS Data Access Tools
[![Documentation Status](https://readthedocs.org/projects/arccssive/badge/?version=latest)](https://readthedocs.org/projects/arccssive/?badge=latest)
[![Build Status](https://travis-ci.org/coecms/ARCCSSive.svg?branch=master)](https://travis-ci.org/coecms/ARCCSSive)
[![CircleCI](https://circleci.com/gh/coecms/ARCCSSive.svg?style=shield)](https://circleci.com/gh/coecms/ARCCSSive)
[![codecov.io](http://codecov.io/github/coecms/ARCCSSive/coverage.svg?branch=master)](http://codecov.io/github/coecms/ARCCSSive?branch=master)
[![Code Health](https://landscape.io/github/coecms/ARCCSSive/master/landscape.svg?style=flat)](https://landscape.io/github/coecms/ARCCSSive/master)
[![Code Climate](https://codeclimate.com/github/coecms/ARCCSSive/badges/gpa.svg)](https://codeclimate.com/github/coecms/ARCCSSive)
[![PyPI version](https://badge.fury.io/py/ARCCSSive.svg)](https://pypi.python.org/pypi/ARCCSSive)
[![Anaconda-Server Badge](https://anaconda.org/coecms/arccssive/badges/version.svg)](https://anaconda.org/coecms/arccssive)
For full documentation please see http://arccssive.readthedocs.org/en/stable
Installing
==========
### Raijin
The stable version of ARCCSSive is available on Rajin in the `analysis27` Anaconda environment:
raijin $ module use /g/data3/hh5/public/modules
raijin $ module load conda/analysis27
and is also available as a module:
raijin $ module use ~access/modules
raijin $ module load pythonlib/ARCCSSive
### NCI Virtual Desktops
NCI's virtual desktops allow you to use ARCCSSive from a Jupyter notebook. For
details on how to use virtual desktops see http://vdi.nci.org.au/help
ARCCSSive can be accessed on VDI using the Anaconda environments:
vdi $ module use /g/data3/hh5/public/modules
vdi $ module load conda/analysis27
### Local Install
You can install ARCCSSive locally using either Anaconda or Pip. You will need
to copy the database file from Raijin
$ pip install ARCCSSive
# or
$ conda install -c coecms arccssive
$ scp raijin:/g/data1/ua6/unofficial-ESG-replica/tmp/tree/cmip5_raijin_latest.db $PWD/cmip5.db
$ export CMIP5_DB=sqlite:///$PWD/cmip5.db
### Development Version
To install the current development version with a test database:
$ pip install --user git+https://github.com/coecms/ARCCSSive.git
$ export CMIP5_DB=sqlite:///$HOME/cmip5.db
CMIP5
=====
Query and access the CMIP5 data from Raijin
```python
from ARCCSSive import CMIP5
cmip = CMIP5.DB.connect()
for output in cmip.outputs(model='ACCESS1-0'):
variable = output.variable
files = output.filenames()
```
Uses
[SQLAlchemy](http://docs.sqlalchemy.org/en/rel_1_0/orm/tutorial.html#querying)
to filter and sort the data files.
ARCCSS Data Access Tools
[![Documentation Status](https://readthedocs.org/projects/arccssive/badge/?version=latest)](https://readthedocs.org/projects/arccssive/?badge=latest)
[![Build Status](https://travis-ci.org/coecms/ARCCSSive.svg?branch=master)](https://travis-ci.org/coecms/ARCCSSive)
[![CircleCI](https://circleci.com/gh/coecms/ARCCSSive.svg?style=shield)](https://circleci.com/gh/coecms/ARCCSSive)
[![codecov.io](http://codecov.io/github/coecms/ARCCSSive/coverage.svg?branch=master)](http://codecov.io/github/coecms/ARCCSSive?branch=master)
[![Code Health](https://landscape.io/github/coecms/ARCCSSive/master/landscape.svg?style=flat)](https://landscape.io/github/coecms/ARCCSSive/master)
[![Code Climate](https://codeclimate.com/github/coecms/ARCCSSive/badges/gpa.svg)](https://codeclimate.com/github/coecms/ARCCSSive)
[![PyPI version](https://badge.fury.io/py/ARCCSSive.svg)](https://pypi.python.org/pypi/ARCCSSive)
[![Anaconda-Server Badge](https://anaconda.org/coecms/arccssive/badges/version.svg)](https://anaconda.org/coecms/arccssive)
For full documentation please see http://arccssive.readthedocs.org/en/stable
Installing
==========
### Raijin
The stable version of ARCCSSive is available on Rajin in the `analysis27` Anaconda environment:
raijin $ module use /g/data3/hh5/public/modules
raijin $ module load conda/analysis27
and is also available as a module:
raijin $ module use ~access/modules
raijin $ module load pythonlib/ARCCSSive
### NCI Virtual Desktops
NCI's virtual desktops allow you to use ARCCSSive from a Jupyter notebook. For
details on how to use virtual desktops see http://vdi.nci.org.au/help
ARCCSSive can be accessed on VDI using the Anaconda environments:
vdi $ module use /g/data3/hh5/public/modules
vdi $ module load conda/analysis27
### Local Install
You can install ARCCSSive locally using either Anaconda or Pip. You will need
to copy the database file from Raijin
$ pip install ARCCSSive
# or
$ conda install -c coecms arccssive
$ scp raijin:/g/data1/ua6/unofficial-ESG-replica/tmp/tree/cmip5_raijin_latest.db $PWD/cmip5.db
$ export CMIP5_DB=sqlite:///$PWD/cmip5.db
### Development Version
To install the current development version with a test database:
$ pip install --user git+https://github.com/coecms/ARCCSSive.git
$ export CMIP5_DB=sqlite:///$HOME/cmip5.db
CMIP5
=====
Query and access the CMIP5 data from Raijin
```python
from ARCCSSive import CMIP5
cmip = CMIP5.DB.connect()
for output in cmip.outputs(model='ACCESS1-0'):
variable = output.variable
files = output.filenames()
```
Uses
[SQLAlchemy](http://docs.sqlalchemy.org/en/rel_1_0/orm/tutorial.html#querying)
to filter and sort the data files.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ARCCSSive-0.3.2.tar.gz
(61.3 kB
view hashes)
Built Distributions
ARCCSSive-0.3.2-py3-none-any.whl
(31.8 kB
view hashes)
ARCCSSive-0.3.2-py2-none-any.whl
(31.8 kB
view hashes)
Close
Hashes for ARCCSSive-0.3.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3b237e07939f9233a4fb3be6e6101dd3df3045b144c1ac31d061d00e055e76c1 |
|
MD5 | 110fd7f1bfbd9bc2838b515217b25a7f |
|
BLAKE2b-256 | aa7198381901db5db83be4ea246118309c499828793c3d13e7c154956438975b |
Close
Hashes for ARCCSSive-0.3.2-py2-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ed2932b653cf35564bee8d48d2c4391726a3cd3ccfb8f9d5632944d892d093ad |
|
MD5 | 42ee4e66f8c6776b0cb95219fb1804b4 |
|
BLAKE2b-256 | 5481f2685b3cafcaa8fe57b57893b0ce48fea890b5e1587d621688114ff71144 |