A package implementing adaptive lasso for logistic regression
Project description
AdaptoLogit
package
Introduction
AdaptoLogit
is a python package that proposes the implementation of adaptive lasso to solve logistic regression models.
Dependencies
AdaptoLogit
requires:
- Numpy >= 1.2
- SciPy >= 1.7.0
- Scikit-learn >= 1.0
User installation
If you already have a working installation of numpy, scipy and scikit-learn, the easiest way to install AdaptoLogit is using pip:
pip install AdaptoLogit
Usage Example
In the following example, the package is used to apply adaptive lasso logistic regression on simulated binary data. Cross validation is carried out to get the optimal subset of parameters for the data.
from sklearn.model_selection import GridSearchCV
import numpy as np
import AdaptoLogit as al
from sklearn.datasets import make_classification
# Generate data
X, y = make_classification(random_state=8) # 100 samples, 20 features, 2 informative
# Estimate weights
weight = al.AdaptiveWeights(power_weight=(0.5,1,1.5))
weight.fit(X, y)
# Build model
model = al.AdaptiveLogistic()
# Cross validation for best subset of parameters
param_grid = {'C':[1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'weight_array': weight.lasso_weights_,
'solver': ['saga','liblinear'], 'max_iter': [1000, 10000]}
grid_search = GridSearchCV(model, param_grid, cv=3, scoring='accuracy', n_jobs=8)
grid_search.fit(X, y)
final_model = grid_search.best_estimator_
# Model coefficients
print("Model coefficients ", final_model.coef_)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
AdaptoLogit-0.0.1.tar.gz
(20.0 kB
view details)
File details
Details for the file AdaptoLogit-0.0.1.tar.gz
.
File metadata
- Download URL: AdaptoLogit-0.0.1.tar.gz
- Upload date:
- Size: 20.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0265f2796db3c00c10c79a3b2fe57a458524f36e34981f5c2c01e41803876fa1 |
|
MD5 | 4dd8c630f60cea577256b80a98b2b7bf |
|
BLAKE2b-256 | 3817239b6ac60a526a79c0a4c1263e2fa9dcffd569916efb0a5eeadafbf60938 |