Advanced use of neural networks
Project description
ANN
A module to simplify the establishment of neural networks
Installation
Run the following to install:
pip install Advanced-Neural-Network
Usage
from ANN import *
####Initialise network####
my_network = neural_network()
####Set INPUT_LAYER####
#Add Input neurons
my_network.Add_Input_Neuron("speed_neuron","Input Cell")
my_network.Add_Input_Neuron("pos_neuron","Input Cell")
####Set HIDDEN_LAYER####
#Add Hidden neurons
my_network.Add_Hidden_Neuron("neuron1_layer1","Hidden Cell","Sigmoid")
my_network.Add_Hidden_Neuron("neuron1_layer2","Hidden Cell","Linear",alpha=1)
my_network.Add_Hidden_Neuron("neuron2_layer2","Hidden Cell","Sigmoid",biais=0.7)
####Set OUTPUT_LAYER####
my_network.Add_Output_Neuron("output1","Output Cell","Sigmoid")
####Set Bridge####
bridge_list = [
["speed_neuron","neuron1_layer1"],#Bridge from speed_neuron to neuron1_layer1
["pos_neuron","neuron1_layer1"],
["pos_neuron","neuron2_layer2"],
["neuron1_layer1","neuron1_layer2"],
["neuron1_layer1","neuron2_layer2"],
["neuron1_layer2","output1"],
["neuron2_layer2","output1"]
]
my_network.Add_Bridge(bridge_list)
#####TRAIN NEURONAL NETWORK#####
#return 1 when speed_neuron and pos_neuron is one
inputs = [
[0,0],
[0,1],
[1,1],
[1,0],
[1,1]
]
expected = [
[0],
[0],
[1],
[0],
[1]
]
#set learning_rate
learning_rate = 0.01
#set number of epoch
nb_epoch = 2000
#start training
my_network.train(inputs,expected,learning_rate,nb_epoch,display=True)
#predict output value
print(my_network.predict([0,1]))
print(my_network.predict([1,1]))
$ pip install -e .[dev]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for Advanced_Neural_Network-1.0.2.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3a0c503530bf916739e65214cb75a94b728577fbba018e17719fcf59bfa00910 |
|
MD5 | 27e0eddb1b96f717e7fae967e92c3381 |
|
BLAKE2b-256 | 17961ed122a249e81e828a95b92c1c2db374602f8aa8c7854089f692e72e11d0 |
Close
Hashes for Advanced_Neural_Network-1.0.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dfe57553d47970344190d5e320101655198f4110d551995747d0606d949832d3 |
|
MD5 | ba0773c5c1d7177e78c46dbef47060e3 |
|
BLAKE2b-256 | f4bab7bae1c20e844394699fa1f572c26876cd3dae79cbeeba1a61b891eed09c |