Skip to main content

The Regression class simplifies regression analysis by providing a convenient and flexible approach for model training, evaluation, and hyperparameter tuning.The Classifier class streamlines classification tasks by offering a well-organized framework for model selection, hyperparameter tuning,

Project description

Project Title

Simplifying Regression and Classification Modeling

Guide

Installation setup

pip install AlgoMaster

Classfication model

  1. Initialize the model

    `Classifier=AlgoMaster.Classifier(X,Y,test_size=0.2,random_state=20)`
    
  2. Train the model and predict the results in table format

    `Classifier.model_training()`
    
  3. Ensemble technique

    `Classifier.ensemble_prediction(No. of models)`
    
  4. Single Training

    To predict unseen data

    `data=[1,2,3,4,5,6,7,8,9]
    
    Classifier.logistic_test(data)
    
    Classifier.KNeighbors_test(data)
    
    Classifier.GaussianNB_test(data)
    
    Classifier.Bagging_test(data)
    
    Classifier.ExtraTrees_test(data)
    
    Classifier.RandomForest_test(data)
    
    Classifier.DecisionTree_test(data)
    
    Classifier.AdaBoost_test(data)
    
    Classifier.GradientBoosting_test(data)
    
    Classifier.XGBoost_test(data)
    
    Classifier.SGD_test(data)
    
    Classifier.SVC_test(data)
    
    Classifier.Ridge_test(data)
    
    Classifier.BernoulliNB_test(data)`
    
  5. Hyperparameter Turning

    To find the best parameters for the model

    `Classifier.hyperparameter_tuning()`
    
  6. Single Hyperparameter Turning

    To find the best parameters for the model

    `Classifier.logistic_hyperparameter()
    
    Classifier.KNeighbors_hyperparameter()
    
    Classifier.GaussianNB_hyperparameter()
    
    Classifier.Bagging_hyperparameter()
    
    Classifier.ExtraTrees_hyperparameter()
    
    Classifier.RandomForest_hyperparameter()
    
    Classifier.DecisionTree_hyperparameter()
    
    Classifier.AdaBoost_hyperparameter()
    
    Classifier.GradientBoosting_hyperparameter()
    
    Classifier.XGBoost_hyperparameter()
    
    Classifier.SGD_hyperparameter()
    
    Classifier.SVC_hyperparameter()
    
    Classifier.Ridge_hyperparameter()
    
    Classifier.BernoulliNB_hyperparameter()`
    

Regression model

  1. Initialize the model

    `Regressor=AlgoMaster.Regressor(X,Y,test_size=0.2,random_state=20)`
    
  2. Train the model and predict the results in table format

    `Regressor.model_training()`
    
  3. Ensemble technique

    `Regressor.ensemble_prediction(No. of models)`
    
  4. Single Training

    `data=[1,2,3,4,5,6,7,8,9]
    
    Regressor.LinearRegression_test(data)
    
    Regressor.KNeighbors_test(data)
    
    Regressor.Bagging_test(data)
    
    Regressor.ExtraTrees_test(data)
    
    Regressor.RandomForest_test(data)
    
    Regressor.DecisionTree_test(data)
    
    Regressor.AdaBoost_test(data)
    
    Regressor.GradientBoosting_test(data)
    
    Regressor.XGBoost_test(data)
    
    Regressor.TheilSen_test(data)
    
    Regressor.SVR_test(data)
    
    Regressor.Ridge_test(data)
    
    Regressor.RANSAC_test(data)
    
    Regressor.ARD_test(data)
    
    Regressor.BayesianRidge_test(data)
    
    Regressor.HuberRegressor_test(data)
    
    Regressor.Lasso_test(data)
    
    Regressor.ElasticNet_test(data)`
    
  5. Hyperparameter Turning

    To find the best parameters for the model

    `Regressor.hyperparameter_tuning()`
    
  6. Single Hyperparameter Turning

    To find the best parameters for the model

    `Regressor.KNeighbors_hyperparameter()
    
    Regressor.Bagging_hyperparameter()
    
    Regressor.ExtraTrees_hyperparameter()
    
    Regressor.RandomForest_hyperparameter()
    
    Regressor.DecisionTree_hyperparameter()
    
    Regressor.AdaBoost_hyperparameter()
    
    Regressor.GradientBoosting_hyperparameter()
    
    Regressor.XGBoost_hyperparameter()
    
    Regressor.TheilSen_hyperparameter()
    
    <!-- Regressor.SVR_hyperparameter() -->
    
    Regressor.Ridge_hyperparameter()
    
    Regressor.RANSAC_hyperparameter()
    
    Regressor.ARD_hyperparameter()
    
    Regressor.BayesianRidge_hyperparameter()
    
    Regressor.Lasso_hyperparameter()
    
    Regressor.ElasticNet_hyperparameter()`
    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

AlgoMaster-0.1.3.tar.gz (11.3 kB view details)

Uploaded Source

Built Distribution

AlgoMaster-0.1.3-py3-none-any.whl (11.6 kB view details)

Uploaded Python 3

File details

Details for the file AlgoMaster-0.1.3.tar.gz.

File metadata

  • Download URL: AlgoMaster-0.1.3.tar.gz
  • Upload date:
  • Size: 11.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for AlgoMaster-0.1.3.tar.gz
Algorithm Hash digest
SHA256 849b04883816083851fd7564c9f1ae3ca3e86b01a99a46090849b7c0437501a6
MD5 78de4c2157cb3f8dc9341d66f745e8fb
BLAKE2b-256 e111b460960de8c90e19e917911363f1fb857c0c826f72bd411b0646a7d46984

See more details on using hashes here.

File details

Details for the file AlgoMaster-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: AlgoMaster-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 11.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for AlgoMaster-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 2eaa02d2ef59494befd6850ef0a6e11a34b1cfc94f16a2b9eee6dff4c9824eda
MD5 006fc510e8f484371ffc578ab6c35201
BLAKE2b-256 e4a92e54528b4a30fa89ea17291a87e6d183179cd865ac5784574276b5e7efc9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page