Skip to main content

Algometrix: Your Comprehensive Machine Learning Model Comparison Tool. Easily assess and compare the performance of over 22 classification and 27 regression algorithms across 14 evaluation metrics for both classification and regression problems. Make data-driven decisions to select the best model for your dataset.

Project description

Algometrix | Your Comprehensive Machine Learning Model Comparison Tool

Algometrix is a powerful and versatile Python package designed to simplify the process of evaluating and selecting the most suitable machine-learning models for your data analysis needs. Whether you're tackling classification tasks, including binary and multiclass problems, or regression challenges, Algometrix has you covered.

It offers extensive support for more than 22 classification algorithms/models along with six comprehensive evaluation metrics tailored towards these models. Furthermore, Algometrix caters to over 27 regression algorithms/models backed by eight diverse evaluation metrics that enable users to gain valuable insights into their models' performance. The package facilitates seamless comparisons between multiple models while offering a broad range of standard evaluative measures such as precision, recall, F1 score, Jaccard score, mean squared error (MSE), among many others.

With its adaptable nature supporting both binary classifications as well as multiclass classifications within the realm of classifiers coupled with its proficiency in evaluating regressions tasks; Algometrix grants users unparalleled flexibility in analyzing model outputs across various domains.

Features

  • Compare over 22 classification algorithms and 27 regression models.
  • Evaluate models using 14+ comprehensive metrics for classification and regression.
  • Evaluation support for both binary and multiclass classification problems.
  • Seamlessly process both regression and classification problems.
  • Empower data-driven decisions by selecting the optimal model for your dataset.

Installation

Install Algometrix using pip

pip install Algometrix

For Python3, use

pip3 install Algometrix

Usage

Function Definition

algometrix(X_train, X_test, y_train, y_test, prob_type="None", classification_type="None", algorithms="all", metrics="all", cross_validation=False)

Here,

  • X_train, X_test, y_train, y_test are variables that contain data split into training and test.

  • prob_type defines the type of Machine Learning Problem, i.e., Classification or Regression.

    [Takes input as "class" for classification and "reg" for regression]

  • classification_type defines the type of Classification Problem, i.e., Multiclass or Binary.

    [Takes input as "multiclass" for Multiclass Classification and "binary" for Binary Classification]

  • algorithms defines the models to be fitted

    [Takes input as "all" or a list containing the name of models (only select for the names given Details section){As of now, only "all" is available}]

  • metrics defines the metrics to be evaluated

    [Takes input as "all" or a list containing the name of metrics (only select for the names given Details section){As of now, only "all" is available}]

  • cross_validation defines if Cross Validation is to be applied

    [Takes input as True or False {Not Available as of now}]

Examples

Example 1 | Binary Classification

Example 1 | Binary Classification

binary_example

Output:

Algorithm Accuracy Precision Recall F1-Score Jaccard Matthews Score
0 SVC 0.416667 0.416667 0.416667 0.416667 0.263158 0.000000
1 KNeighborsClassifier 0.500000 0.500000 0.500000 0.500000 0.333333 0.028571
2 MultinomialNB 0.583333 0.583333 0.583333 0.583333 0.411765 0.377964
3 DecisionTreeClassifier 0.333333 0.333333 0.333333 0.333333 0.200000 -0.292770
4 LogisticRegression 0.666667 0.666667 0.666667 0.666667 0.500000 0.371429
5 AdaBoostClassifier 0.583333 0.583333 0.583333 0.583333 0.411765 0.169031
6 BaggingClassifier 0.250000 0.250000 0.250000 0.250000 0.142857 -0.478091
7 ExtraTreesClassifier 0.250000 0.250000 0.250000 0.250000 0.142857 -0.507093
8 GradientBoostingClassifier 0.333333 0.333333 0.333333 0.333333 0.200000 -0.314286
9 BernoulliNB 0.416667 0.416667 0.416667 0.416667 0.263158 0.000000
10 GaussianNB 0.500000 0.500000 0.500000 0.500000 0.333333 -0.028571
11 HistGradientBoostingClassifier 0.416667 0.416667 0.416667 0.416667 0.263158 0.000000
12 QuadraticDiscriminantAnalysis 0.500000 0.500000 0.500000 0.500000 0.333333 -0.028571
13 RandomForestClassifier 0.333333 0.333333 0.333333 0.333333 0.200000 -0.314286
14 RidgeClassifier 0.666667 0.666667 0.666667 0.666667 0.500000 0.371429
15 RidgeClassifierCV 0.666667 0.666667 0.666667 0.666667 0.500000 0.371429
16 Perceptron 0.583333 0.583333 0.583333 0.583333 0.411765 0.000000
17 PassiveAgressiveClassifier 0.416667 0.416667 0.416667 0.416667 0.263158 0.000000
18 OutputCodeClassifier 0.250000 0.250000 0.250000 0.250000 0.142857 -0.507093
19 MLPClassifier 0.583333 0.583333 0.583333 0.583333 0.411765 0.000000
20 LogisticRegressionCV 0.416667 0.416667 0.416667 0.416667 0.263158 0.000000
21 LinearDiscriminantAnalysis 0.666667 0.666667 0.666667 0.666667 0.500000 0.371429
22 DummyClassifer 0.416667 0.416667 0.416667 0.416667 0.263158 0.000000

Example 2 | Multiclass Classification

Example 2 | Multiclass Classification - Google Colab Link

multiclass_example

Output:

Algorithm Accuracy Precision Recall F1-Score Jaccard Matthews Score
0 SVC 0.311111 0.311111 0.311111 0.311111 0.184211 0.000000
1 KNeighborsClassifier 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 MultinomialNB 0.777778 0.777778 0.777778 0.777778 0.636364 0.680439
3 DecisionTreeClassifier 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
4 LogisticRegression 0.933333 0.933333 0.933333 0.933333 0.875000 0.900667
5 AdaBoostClassifier 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
6 BaggingClassifier 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
7 ExtraTreesClassifier 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
8 GradientBoostingClassifier 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
9 BernoulliNB 0.311111 0.311111 0.311111 0.311111 0.184211 0.000000
10 GaussianNB 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
11 HistGradientBoostingClassifier 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
12 QuadraticDiscriminantAnalysis 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
13 RandomForestClassifier 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
14 RidgeClassifier 0.911111 0.911111 0.911111 0.911111 0.836735 0.869436
15 RidgeClassifierCV 0.911111 0.911111 0.911111 0.911111 0.836735 0.869436
16 Perceptron 0.622222 0.622222 0.622222 0.622222 0.451613 0.548971
17 PassiveAgressiveClassifier 0.777778 0.777778 0.777778 0.777778 0.636364 0.678609
18 OutputCodeClassifier 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
19 MLPClassifier 0.600000 0.600000 0.600000 0.600000 0.428571 0.431152
20 LogisticRegressionCV 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
21 LinearDiscriminantAnalysis 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
22 DummyClassifer 0.311111 0.311111 0.311111 0.311111 0.184211 0.000000

Example 3 | Regression

Example 3 | Regression - Google Colab Link

regression_example

Output:

Algorithm R2 Score MSE RMSE MAE MAPE RMSLE MSLE MedAE
0 ARDRegression 0.917697 4.108494e+07 6409.753717 5239.417534 0.062903 0.077906 0.006069 4817.247851
1 AdaBoostRegressor 0.848884 7.543573e+07 8685.374616 6938.123512 0.083586 0.110943 0.012308 4705.660714
2 BayesianRidge 0.917697 4.108494e+07 6409.753717 5239.417534 0.062903 0.077906 0.006069 4817.247851
3 CCA 0.921953 3.896024e+07 6241.814176 4967.335260 0.059350 0.076020 0.005779 4437.462764
4 DecisionTreeRegressor 0.834468 8.263201e+07 9090.215167 7735.062500 0.097230 0.120206 0.014450 5588.250000
5 DummyRegressor -0.111854 5.550261e+08 23558.992527 21016.659091 0.276376 0.306098 0.093696 18828.636364
6 ElasticNet 0.904192 4.782645e+07 6915.667077 5911.220137 0.071675 0.084253 0.007099 6004.368917
7 ExtraTreesRegressor 0.896412 5.170991e+07 7190.960221 5732.981250 0.073146 0.095814 0.009180 4867.170000
8 GammaRegressor 0.789340 1.051594e+08 10254.726158 8869.015658 0.106939 0.126560 0.016018 7585.031298
9 GradientBoostingRegressor 0.836330 8.170230e+07 9038.932528 7706.852903 0.096833 0.119321 0.014238 5554.335120
10 HistGradientBoostingRegressor -0.111854 5.550261e+08 23558.992527 21016.659091 0.276376 0.306098 0.093696 18828.636364
11 HuberRegressor 0.909233 4.531003e+07 6731.272606 5532.071087 0.065076 0.080900 0.006545 4837.661892
12 IsotonicRegression 0.906211 4.681865e+07 6842.415671 5515.111954 0.067195 0.086121 0.007417 4892.522222
13 KNeighborsRegressor 0.777560 1.110396e+08 10537.530589 8356.687500 0.101855 0.134679 0.018138 7351.500000
14 KernelRidge 0.744503 1.275414e+08 11293.423112 9857.106177 0.142520 0.222372 0.049449 9499.519986
15 Lasso 0.918098 4.088475e+07 6394.118608 5215.569586 0.062591 0.077723 0.006041 4775.106899
16 LinearRegression 0.918098 4.088462e+07 6394.108265 5215.553723 0.062591 0.077723 0.006041 4775.078867
17 OrthogonalMatchingPursuit 0.918098 4.088462e+07 6394.108265 5215.553723 0.062591 0.077723 0.006041 4775.078867
18 PLSCanonical 0.921953 3.896024e+07 6241.814176 4967.335260 0.059350 0.076020 0.005779 4437.462764
19 PLSRegression 0.918098 4.088462e+07 6394.108265 5215.553723 0.062591 0.077723 0.006041 4775.078867
20 PassiveAggressiveRegressor -3.882800 2.437443e+09 49370.466856 48164.437500 0.601943 0.942270 0.887873 51737.250000
21 PoissonRegressor 0.823058 8.832780e+07 9398.287217 7663.304838 0.093380 0.116128 0.013486 5834.399751
22 RANSACRegressor 0.916163 4.185057e+07 6469.202025 5199.125327 0.061458 0.078296 0.006130 4447.379067
23 RadiusNeighborsRegressor 0.824479 8.761805e+07 9360.451411 7125.990625 0.086287 0.116800 0.013642 4257.729167
24 RandomForestRegressor 0.682301 1.585920e+08 12593.332585 9046.311605 0.102425 0.161027 0.025930 5564.875213
25 Ridge 0.916967 4.144903e+07 6438.092342 5281.995813 0.063459 0.078239 0.006121 4892.486577
26 TheilSenRegressor 0.886205 5.680532e+07 7536.930405 6363.917428 0.073557 0.089124 0.007943 5589.457191
27 TweedieRegressor 0.887788 5.601530e+07 7484.336856 6537.621805 0.079858 0.091876 0.008441 7109.469262

Details

Regression Models

  • ARDRegression
  • AdaBoostRegressor
  • BayesianRidge
  • CCA
  • DecisionTreeRegressor
  • DummyRegressor
  • ElasticNet
  • ExtraTreesRegressor
  • GammaRegressor
  • GradientBoostingRegressor
  • HistGradientBoostingRegressor
  • HuberRegressor
  • IsotonicRegression
  • KNeighborsRegressor
  • KernelRidge
  • Lasso
  • LinearRegression
  • OrthogonalMatchingPursuit
  • PLSCanonical
  • PLSRegression
  • PassiveAggressiveRegressor
  • PoissonRegressor
  • RANSACRegressor
  • RadiusNeighborsRegressor
  • RandomForestRegressor
  • Ridge
  • TheilSenRegressor
  • TweedieRegressor

Regression Metrics

  • Accuracy
  • R² Score (R2Score)
  • Mean Squared Error (MSE)
  • Root Mean Squared Error (RMSE)
  • Mean Absolute Error (MAE)
  • Mean Absolute Percentage Error (MAPE)
  • Root Mean Squared Log Error (RMSLE)
  • Mean Squared Log Error (MSLE)
  • Median Absolute Error (MedAE)

Classification Models

  • AdaBoostClassifier
  • BaggingClassifier
  • BernoulliNB
  • GaussianNB
  • DecisionTreeClassifier
  • ExtraTreesClassifier
  • GradientBoostingClassifier
  • HistGradientBoostingClassifier
  • KNeighborsClassifier
  • LogisticRegression
  • MultinomialNB
  • QuadraticDiscriminantAnalysis
  • RandomForestClassifier
  • RidgeClassifier
  • RidgeClassifierCV
  • SVC
  • Perceptron
  • PassiveAgressiveClassifier
  • OutputCodeClassifier
  • MLPClassifier
  • LogisticRegressionCV
  • LinearDiscriminantAnalysis
  • DummyClassifier

Classification Metrics

  • Accuracy
  • Precision
  • Recall
  • F1-Score
  • Jaccard Score
  • Matthews Score

License

This project is licensed under the MIT License - see the LICENSE file for details.

Contributor

Rehan Khan

Acknowledgement

Special thanks to the open-source community for their contributions to machine learning and data science.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Algometrix-0.0.1.tar.gz (15.5 kB view details)

Uploaded Source

Built Distribution

Algometrix-0.0.1-py3-none-any.whl (13.1 kB view details)

Uploaded Python 3

File details

Details for the file Algometrix-0.0.1.tar.gz.

File metadata

  • Download URL: Algometrix-0.0.1.tar.gz
  • Upload date:
  • Size: 15.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for Algometrix-0.0.1.tar.gz
Algorithm Hash digest
SHA256 ca173f0abc5a0f8b5b26f83cc17998bce63c73b3736636c0c56e3e71fd23ee4e
MD5 bd52f607764b2cc13375134892612de5
BLAKE2b-256 b69167aa8caa7b473cc4cf1c5d3450e491cf1346b9c4c73f5a20cf6d092c404d

See more details on using hashes here.

File details

Details for the file Algometrix-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: Algometrix-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 13.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for Algometrix-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f20aef8b7d52ba1ed8908c06bb3fb69c9a4491ce6bbc615f04cb3ec97e964865
MD5 05bbd77a5f705619b0aa76524860a8f7
BLAKE2b-256 ef614a0ee62564d9318f4f27f81fe365935e25c013b4aba3df507a4a53057544

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page