Skip to main content

Fully automated end to end machine learning pipeline

Project description

Amplo - AutoML (for Machine Data)

image image PyPI - License

Welcome to the Automated Machine Learning package Amplo. Amplo's AutoML is designed specifically for machine data and works very well with tabular time series data (especially unbalanced classification!).

Though this is a standalone Python package, Amplo's AutoML is also available on Amplo's ML Developer Platform. With a graphical user interface and various data connectors, it is the ideal place for service engineers to get started on Predictive Maintenance development.

Amplo's AutoML Pipeline contains the entire Machine Learning development cycle, including exploratory data analysis, data cleaning, feature extraction, feature selection, model selection, hyper parameter optimization, stacking, version control, production-ready models and documentation.

Downloading Amplo

The easiest way is to install our Python package through PyPi:

pip install Amplo

2. Amplo AutoML Features

Exploratory Data Analysis

from Amplo.AutoML import DataExploring Automated Exploratory Data Analysis. Covers binary classification and regression. It generates:

  • Missing Values Plot
  • Line Plots of all features
  • Box plots of all features
  • Co-linearity Plot
  • SHAP Values
  • Random Forest Feature Importance
  • Predictive Power Score

Additionally fFor Regression:

  • Seasonality Plots
  • Differentiated Variance Plot
  • Auto Correlation Function Plot
  • Partial Auto Correlation Function Plot
  • Cross Correlation Function Plot
  • Scatter Plots

Data Processing

from Amplo.AutoML import DataProcessing Automated Data Cleaning. Handles the following items:

  • Cleans Column Names
  • Duplicate Columns and Rows
  • Data Types
  • Missing Values
  • Outliers
  • Constant Columns

Feature Processing

from Amplo.AutoML import FeatureProcessing Automatically extracts and selects features. Removes Co-Linear Features. Included Feature Extraction algorithms:

  • Multiplicative Features
  • Dividing Features
  • Additive Features
  • Subtractive Features
  • Trigonometric Features
  • K-Means Features
  • Lagged Features
  • Differencing Features

Included Feature Selection algorithms:

  • Random Forest Feature Importance (Threshold and Increment)
  • Predictive Power Score
  • Boruta

Modelling

from Amplo.AutoML import Modelling Runs various regression or classification models. Includes:

  • Scikit's Linear Model
  • Scikit's Random Forest
  • Scikit's Bagging
  • Scikit's GradientBoosting
  • Scikit's HistGradientBoosting
  • DMLC's XGBoost
  • Catboost's Catboost
  • Microsoft's LightGBM

Grid Search

from Amplo.GridSearch import *

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Amplo-0.3.2.tar.gz (60.1 kB view details)

Uploaded Source

Built Distribution

Amplo-0.3.2-py3-none-any.whl (79.6 kB view details)

Uploaded Python 3

File details

Details for the file Amplo-0.3.2.tar.gz.

File metadata

  • Download URL: Amplo-0.3.2.tar.gz
  • Upload date:
  • Size: 60.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for Amplo-0.3.2.tar.gz
Algorithm Hash digest
SHA256 b48e129f0cf4cef8b081800630732bb11eec02bcb255e8ea6c744bbdcd21b3a2
MD5 bc7ffa28933b4bc1b01d5babba1c49e5
BLAKE2b-256 6b4e7b54f190a456967d2149d2c8dda16e301b68ea918b2e7c16719ecbc387fc

See more details on using hashes here.

File details

Details for the file Amplo-0.3.2-py3-none-any.whl.

File metadata

  • Download URL: Amplo-0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 79.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for Amplo-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 4e385722122947c8f0e66d74c994f04b5330010f94f852d5bf80eed728d01306
MD5 ba483da5b053df2b2f1464d6ee05a0fb
BLAKE2b-256 37dd728ceaa8e93bdc99c2d890e1a718ebbf96fd3a4613031f729f91c12aeebe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page