Skip to main content

Areix IO Backtesting Framework

Project description

Areix IO (Alpha Test)

Documentation

Installation

Create a virtual environment

virtualenv venv --python=python3

Activate the virtual environment

# Macbook / Linus
source venv/bin/activate 

# Windows
venv/Scripts/activate

Deactivate

deactivate

Install Areix-IO package

pip install areix_io

Usage

Define your strategy class:

from areix_io import (
    create_report_folder, Side,
    Strategy, BinanceSpotDataFeed, BackTest, 
    BackTestBroker, CommissionScheme
)

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, f1_score
import pandas as pd
import numpy as np

PRED_DAYS = 2 
PCT_CHANGE = 0.004
"""
Data pre processing step
"""
def bollinger_band(data, n_lookback, n_std):
    hlc3 = (data['high'] + data['low'] + data['close']) / 3
    mean, std = hlc3.rolling(n_lookback).mean(), hlc3.rolling(n_lookback).std()
    upper = mean + n_std*std
    lower = mean - n_std*std
    return upper, lower

def update_df(df):
    upper, lower = bollinger_band(df, 20, 2)

    df['ma10'] = df.close.rolling(10).mean()
    df['ma20'] = df.close.rolling(20).mean()
    df['ma50'] = df.close.rolling(50).mean()
    df['ma100'] = df.close.rolling(100).mean()

    df['x_ma10'] = (df.close - df.ma10) / df.close
    df['x_ma20'] = (df.close - df.ma20) / df.close
    df['x_ma50'] = (df.close - df.ma50) / df.close
    df['x_ma100'] = (df.close - df.ma100) / df.close

    df['x_delta_10'] = (df.ma10 - df.ma20) / df.close
    df['x_delta_20'] = (df.ma20 - df.ma50) / df.close
    df['x_delta_50'] = (df.ma50 - df.ma100) / df.close

    df['x_mom'] = df.close.pct_change(periods=2)
    df['x_bb_upper'] = (upper - df.close) / df.close
    df['x_bb_lower'] = (lower - df.close) / df.close
    df['x_bb_width'] = (upper - lower) / df.close

    # df = df.dropna().astype(float)
    return df

def get_X(data):
    return data.filter(like='x_').values

def get_y(data):
    y = data.close.pct_change(PRED_DAYS).shift(-PRED_DAYS)  # Returns after roughly two days
    y[y.between(-PCT_CHANGE, PCT_CHANGE)] = 0             # Devalue returns smaller than 0.4%
    y[y > 0] = 1
    y[y < 0] = -1
    return y

def get_clean_Xy(df):
    X = get_X(df)
    y = get_y(df).values
    isnan = np.isnan(y)
    X = X[~isnan]
    y = y[~isnan]
    return X, y

class MLStrategy(Strategy):
    num_pre_train = 300

    def initialize(self):
        """
        Model training step
        """
        self.info('initialize')
        self.code = list(self.ctx.feed.keys())[0]
        df = self.ctx.feed[self.code].data
        self.ctx.feed[self.code].data = update_df(df)

        self.y = get_y(df[self.num_pre_train-1:])
        self.y_true = self.y.values

        self.clf = KNeighborsClassifier(7)
        
        df = df.dropna()
        X, y = get_clean_Xy(df[:self.num_pre_train])
        self.clf.fit(X, y)

        self.y_pred = []
    
    def before_trade(self, order):
        return True

    def on_order_ok(self, order):
        self.my_quantity = self.ctx.get_quantity(order['code'])
        self.info(
            f"{order['side'].name} order [number {order['id']}] ({order['order_type'].name}) executed [quantity {order['quantity']}] {order['code']} [price ${order['price']:2f}] [Cost ${order['gross_amount']:2f}] [Commission: ${order['commission']}] [Available Cash: ${self.available_cash}] [Position: #{self.ctx.get_quantity(order['code'])}] [Gross P&L: ${order['pnl']}] [Net P&L: ${order['pnl_net']}]"
        )

        if not order['is_open']:
            self.info(f"Trade closed, pnl: {order['pnl']}========")

    def on_market_start(self):
        # self.info('on_market_start')
        pass

    def on_market_close(self):
        # self.info('on_market_close')
        pass

    def on_order_timeout(self, order):
        self.info(f'on_order_timeout. Order: {order}')
        pass

    def finish(self):
        self.info('finish')

    def on_bar(self, tick):
        """
        Model scoring and decisioning step
        """
        bar_data = self.ctx.bar_data[self.code]
        
        X = get_X(bar_data)
        if bar_data.x_ma100 != bar_data.x_ma100:
            return
        forecast = self.clf.predict([X])[0]
        self.y_pred.append(forecast)

        open, high, low, close = bar_data.open, bar_data.high, bar_data.low, bar_data.close

        upper, lower = close * (1 + np.r_[1, -1]*PCT_CHANGE)

        if forecast == 1 and not self.ctx.get_quantity(self.code):
            o1 = self.order_amount(code=self.code,amount=self.available_cash,side=Side.BUY)
            self.info(f"BUY order [number {o1['id']}] created, [quantity {o1['quantity']}] [price {o1['price']}] [balance: {self.available_cash}]")
            
            osl = self.sell(code=self.code,quantity=o1['quantity'], price=lower, stop_price=lower)
            self.info(f"STOPLOSS order [number {osl['id']}] created, [quantity {osl['quantity']}] [price {osl['price']}] [balance: {self.available_cash}]")
            
        elif forecast == -1 and self.ctx.get_quantity(self.code):
            o2 = self.close(code=self.code, price=upper)
            self.info(f"SELL order [number {o2['id']}] created, [quantity {o2['quantity']}] [price {o2['price']}] [balance: {self.available_cash}]")

Run your strategy:

if __name__ == '__main__':

    base = create_report_folder()

    start_date = '2021-01-01'
    end_date = '2021-07-01'
    interval = '4h'

    code = 'XRP/USDT'
    benchmark_code = 'BTC/USDT'

    cs = CommissionScheme(
        commission_rate=0.001, 
        min_commission=None, 
        is_contract = False
    )
    broker = BackTestBroker(
        commission_scheme=cs,
        trade_at='close', 
        # trade_at='open', 
        cash=1000, 
        short_cash=False, 
        slippage=0.0)
    
    btc = BinanceSpotDataFeed(
        symbol=benchmark_code,
        start_date=start_date, 
        end_date=end_date,  
        interval=interval, 
        min_volume = 0.00001,
        order_ascending=True, 
        store_path=base
    )
    datefeed = BinanceSpotDataFeed(
        symbol=code,
        start_date=start_date, 
        end_date=end_date,  
        interval=interval, 
        min_volume = 0.0001,
        order_ascending=True, 
        store_path=base
    )

    mytest = BackTest(
        [ datefeed ], 
        MLStrategy, 
        benchmark=btc, 
        store_path=base,
        broker=broker
    )

    mytest.start()

Retrieve statistic results:

    prefix = ''
    stats = mytest.ctx.statistic.stats(pprint=True, annualization=252, risk_free=0.0442)
    stats['model_name'] = 'Simple KNN Signal Generation Strategy'
    stats['algorithm'] = ['KNN', 'Simple Moving Average', 'Bollinger Band']
    print(stats)
    mytest.contest_output(is_plot=True)

Result:

start                                                2021-01-01 00:00:00+08:00
end                                                  2021-07-01 00:00:00+08:00
duration                                                     181 days 00:00:00
trading_pairs                                                        [XRPUSDT]
benchmark                                                              BTCUSDT
beginning_balance                                                         1000
ending_balance                                                     6374.787763
total_net_profit                                                   5374.787763
gross_profit                                                       9919.319576
gross_loss                                                        -4544.531813
profit_factor                                                         2.182693
return_on_initial_capital                                             5.374788
annualized_return                                                     0.536384
total_return                                                          5.374788
max_return                                                            5.401244
min_return                                                           -0.004806
number_trades                                                              630
number_winning_trades                                                      317
number_losing_trades                                                       220
avg_daily_trades                                                      6.899160
avg_weekly_trades                                                    32.840000
avg_monthly_trades                                                  136.833333
win_ratio                                                             0.503175
loss_ratio                                                            0.349206
win_days                                                                    64
loss_days                                                                   18
max_win_in_day                                                      701.189561
max_loss_in_day                                                     -51.928662
max_consecutive_win_days                                                    22
max_consecutive_loss_days                                                    2
avg_profit_per_trade                                                 13.209755
trading_period                                         0 years 6 months 0 days
avg_daily_pnl($)                                                      4.949160
avg_daily_pnl                                                         0.001784
avg_weekly_pnl($)                                                   206.722606
avg_weekly_pnl                                                        0.080719
avg_monthly_pnl($)                                                  868.835518
avg_monthly_pnl                                                       0.398852
avg_quarterly_pnl($)                                               1532.511026
avg_quarterly_pnl                                                     0.463027
avg_annualy_pnl($)                                                         NaN
avg_annualy_pnl                                                            NaN
sharpe_ratio                                                          2.022460
sortino_ratio                                                         6.971285
annualized_volatility                                                 0.200512
omega_ratio                                                           0.011848
downside_risk                                                         0.064485
information_ratio                                                     0.058498
beta                                                                  0.105311
alpha                                                                -0.999939
calmar_ratio                                                          5.527284
tail_ratio                                                            9.548038
max_drawdown                                                          0.097043
max_drawdown_period          (2021-06-21 04:00:00+08:00, 2021-06-28 08:00:0...
max_drawdown_duration                                          7 days 04:00:00
sqn                                                                   5.283288
model_name                               Simple KNN Signal Generation Strategy
algorithm                         [KNN, Simple Moving Average, Bollinger Band]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Areix_IO-0.1.20.tar.gz (640.6 kB view details)

Uploaded Source

File details

Details for the file Areix_IO-0.1.20.tar.gz.

File metadata

  • Download URL: Areix_IO-0.1.20.tar.gz
  • Upload date:
  • Size: 640.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.0 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.8.7

File hashes

Hashes for Areix_IO-0.1.20.tar.gz
Algorithm Hash digest
SHA256 2b27b246596a434b03e11aa3ae2fead5c8392c0d64988e7ad0d526531c1cf037
MD5 733a042995527b9fe1be3ffe9dbfbf48
BLAKE2b-256 7d37a8f75004f5495965db077cc963c730d2f58c7c5d4047c1ab64ddc6b24231

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page