This package creates a management system to run the ASTEC algorithms for developmental biology live imaging.
Project description
This library has been created to automatize and help users to segment using ASTEC software.
It will include tools to:
- enhance the data (contour computation, etc ...)
- manage the data (download and upload to distant storage, automatic compression, reduce size)
- segment the data (examples , etc ...)
- plot properties of the embryo data
Table of contents
Install
you need to install conda on your computer you can find a guide to install conda here
Now that conda is installed, open a new terminal, and type the following lines :
conda create -n AstecManager -c ome python=3.6 zeroc-ice36-python omero-py
conda activate AstecManager
python3.6 -m pip install AstecManager
python3.6 -m pip install matplotlib
python3.6 -m pip install h5py
python3.6 -m pip install opencv-contrib-python
python3.6 -m pip install dataclasses
AstecManager tool is now installed, with all the needed libraries.
Update
Often, the tool will be updated to add features, and debug the existing ones.
- To update the tool, you can simply start a terminal in the astecmanager folder and run :
conda activate AstecManager
python3.6 -m pip install AstecManager --upgrade
\
Data Manager Integration
To store the data for further work and archives , the team uses a data manager called OMERO. In the following pipeline, you will be able to upload the different data produced to OMERO , automatically.
In order to upload, you first need to create a file on your computer, somewhere no one can access and that you should not share !
The file should contain the following lines :
host=adress.to.omero.instance
port=omero.port (usually 4064)
group=your team group
secure=True
java_arg=java
login=your omero login
password=your omero password
Save this file with the name you want, I prefer to use : omero_config.txt , and than copy the complete path to the file somewhere you can access.
In the following steps, to upload a data you produce, you will need to copy this path to the parameter "omero_config_file". I will explain this step everytime it will be needed.
Fusion
The most crucial part of this process is combining the images, and it needs to be done quickly. You should begin this step right after copying the large Raw Images, and try to finish it as soon as you can.
These Raw Images are very large, roughly 3 gigabytes each. This means that if you're working with one time point, it will use up about 12 gigabytes of computer memory. Think about it this way: if you're dealing with an embryo at 300 different time points and you have multiple channels of images, your Raw Images folder could take up as much as 2 to 3 terabytes of space on your computer's hard drive.
Additionally, the Raw Images often have a significant amount of background information, which takes up a lot of memory. This background includes unnecessary data.
The fusion step is designed to address the problems we've just talked about:
-
It keeps the most valuable information from each camera angle to create an isotropic image. An isotropic image means that it has the same characteristics, like intensity, across all regions.
-
It reduces the memory needed for a single time point from around 12 gigabytes to a more manageable 500 megabytes.
-
It also trims the image around the embryo, cutting out the excessive background and keeping only the essential information.
For more details about this step , please follow this link
I would advise to split fusion in 2 steps
-
A test step where you will find the best parameters for this specific dataset.
-
A production step where you will apply the best parameters to the complete dataset.
-
Your folder hierarchy should look like this, before starting the fusion
embryo name
└───RAWDATA
│───stack_0_channel_0_obj_left
│───stack_0_channel_0_obj_right
│───stack_1_channel_0_obj_left
│───stack_1_channel_0_obj_right
└───... (more if you have another channel)
Fusion parameters test
The fusion parameters test is a needed step , considering the high number of parameters needed for fusion , we can't take the time to try them one by one, on a large time sequence.
The test step is split in 2 sub steps :
- 1st , a test fusion using the parameter set that is correct for the acquisition we have here
- If it's not working, 4 sets of parameter that could be correct
- If it's still not working , you're invited to explore the fusion parameters documentation here
To start the fusion test step , please download the template parameters file from this link , and save it to your embryo folder. Your file architecture should look like this :
embryo name
│ └───RAWDATA
│ │───stack_0_channel_0_obj_left
│ │───stack_0_channel_0_obj_right
│ │───stack_1_channel_0_obj_left
│ │───stack_1_channel_0_obj_right
│ └───... (more if you have another channel)
└── start_fuse_test.py
And then , you should edit it to bind the good parameter for your embryo :
parameters["embryo_name"] = "'<name>'" : replace <name> with the name of your embryo folder
parameters["begin"]=1 : for test, should be set to the only time point , and be the same than "end"
parameters["end"]=1 : for test, should be set to the only time point , and be the same than "begin"
parameters["user"] = "'<UI>'" : for every step , will be used to store an history of the data,<UI> should be replaced by experimentator name and surname first letters
Setting up those parameters should be enough to start the first fusion test. In order to do so , open a terminal in the embryo folder ;
embryo name <-- Open a terminal here
│ └───RAWDATA
│ │───stack_0_channel_0_obj_left
│ │───stack_0_channel_0_obj_right
│ │───stack_1_channel_0_obj_left
│ │───stack_1_channel_0_obj_right
│ └───... (more if you have another channel)
└── start_fuse_test.py
and then you can start the process with those commands :
conda activate AstecManager
python3.6 start_fuse_test.py
This step will take a few minutes to run, and will generate a fusion image in this directory :
│──embryo name
│ │───RAWDATA
│ │ └─── ...
│ └───FUSE
│ └─── FUSE_01_test
│ │─── embryo_name_fuse_t040.nii
│ └─── ...
└─ start_fuse_test.py
Verify fusion
Now that you generated the first fusion test , you need to verify the quality of the fusion. For this , we have to visually check if the generated image is correct, this can be done using Fiji (here is a link to a documentation on how to use Fiji #TODO ). Here is an example of what a wrong fusion rotation may look like , which is the first error you can find :
Example of correct fusion | Example of fusion with wrong rotation |
---|---|
If the rotation seems good , you will need to check in the temporary images generated by the fusion , if the different steps were well parametered
Inside each fusion folder , you can find a folder called "XZSECTION_XXX" where "XXX" is the time point fused. Inside the folder , you will see 4 images :
- embryoname_xyXXXX_stack0_lc_reg.mha
- embryoname_xyXXXX_stack0_lc_weight.mha
- embryoname_xyXXXX_stack0_rc_reg.mha
- embryoname_xyXXXX_stack0_rc_weight.mha
- embryoname_xyXXXX_stack1_lc_reg.mha
- embryoname_xyXXXX_stack1_lc_weight.mha
- embryoname_xyXXXX_stack1_rc_reg.mha
- embryoname_xyXXXX_stack1_rc_weight.mha
Left-cam stack 0 reg + weighting | Stack cameras matching | Stack 0 and 1 matching |
---|---|---|
On the left image of the table you can see that the registration image (left), is matching the weighting used for the computation. It means that the weighting is correct. On the middle image , you can see that the left camera and right camera of the same stack is matching. On the right image, you can see that both stacks images are matching , so the fusion will be correct.
If the xzsection registration (the images containing <_reg> inside their names) are matching , and the weighing seem to be coherent , you can skip to final fusion step.
If the xzsection registration (the images containing <_reg> inside their names) do not seem to match , either withing the same stack , or between the 2 different stacks, it means that you will need to explore 2 more parameters. We made this step easier by creating a mode that tests automatically all 4 possibles combination for the parameters.
Modify your "start_fusion_test.py" file to change this line :
manager.test_fusion(parameters,parameter_exploration=False)
to
manager.test_fusion(parameters,parameter_exploration=True)
and then start your test step again , the same way you started it before :
conda activate AstecManager
python3.6 start_fuse_test.py
if the xzsection weighting is not matching the image correctly, you may need to change the weighting function used in the fusion computation. In order to do this , modify your "start_fusion_test.py" file to add this line:
parameters["fusion_weighting"]= set it to "'uniform'" , "'ramp'" or "'corner'"
BEFORE the final line :
manager.test_fusion(...
When you changed the file , you can run the fusion test again
conda activate AstecManager
python3.6 start_fuse_test.py
Final fusion
Now that you have finished the fusion test step , found the parameters that gives you a good result , and verified them on the fusion image itself + the temporary images generated in the XZSECTION you can start the final fusion by downloading the parameter file here :
Save it to the embryo folder, in the same location where you saved the test file , and start by editing it :
parameters["embryo_name"] = "'<name>'" : replace <name> with the name of your embryo folder
parameters["begin"]=1 : for fusion, should be set to the first time point of the sequence
parameters["end"]=100 : for fusion, should be set to the last time point of the sequence
parameters["user"] = "'<UI>'" : for every step , will be used to store an history of the data,<UI> should be replaced by experimentator name and surname first letters
parameters["number_of_channels"] = 1 : change this to the number of channel in the raw images acquisition. The same fusion will be applied to all channels
parameters["omero_config_file"]= "'/path/to/the/omero/config/file'" : if you want to upload the result images of the fusion, you can enter the path to your omero configuration file. If you didn't create the omero
file , please read the "Data Manager Integration" section of this documentation. After fusion, a new dataset will be created in the embryo project on OMERO (created if it doesn't exist) , and will contain all of the fusion images
Finally , you will need to modify the following lines :
parameters["fusion_strategy"]= '"hierarchical-fusion"'
parameters["acquisition_orientation"]= '"right"'
If the fusion test ran fine during the test step , and you didn't need to start the 4 fusion test exploration, you can leave the lines as they are. If not , please update them with the parameters that worked the best among the 4 tests fusion.
- if the FUSE_01_left_direct was the good one , change the parameters to :
parameters["fusion_strategy"]= '"direct-fusion"' parameters["acquisition_orientation"]= '"left"'
- if the FUSE_01_left_hierarchical was the good one , change the parameters to :
parameters["fusion_strategy"]= '"hierarchical-fusion"' parameters["acquisition_orientation"]= '"left"'
- if the FUSE_01_right_direct was the good one , change the parameters to :
parameters["fusion_strategy"]= '"direct-fusion"' parameters["acquisition_orientation"]= '"right"'
- if the FUSE_01_right_hierarchical was the good one , change the parameters to :
parameters["fusion_strategy"]= '"hierarchical-fusion"' parameters["acquisition_orientation"]= '"right"'
And finally , if you added other parameters to the test file (for example weighing method modification) , please provide the corresponding lines in the final fusion file too.
When all of this is ready , you can start the final fusion. Open a terminal in the embryo folder and run the following lines
conda activate AstecManager
python3.6 start_fuse_production.py
The computation of the fusion step will take a few hours, depending on the number of time point in the embryo , and the number of channels to fuse. When finished , multiple new data will be generated : First, you can delete the following files and folders :
- folder FUSE/FUSE_01_left_direct
- folder FUSE/FUSE_01_left_hiearchical
- folder FUSE/FUSE_01_right_direct
- folder FUSE/FUSE_01_right_hiearchical
- and the 2 python files "fuse_test.py", "fuse_post.py"
The final folder architecture after fusion will be this one :
experiment folder
└───embryo specie
│──embryo name
│ │───INTRAREG
│ │ └─── INTRAREG_01_TEST
│ │ └─── MOVIES
│ │ └─── FUSE
│ │ └─── FUSE_01
│ │ └─── embryo_name_intrareg_fuse_tbegin-tend_xy0XXX.mha
│ │───RAWDATA
│ │ └─── ...
│ └───FUSE
│ └─── FUSE_01
│ │─── embryo_name_fuse_t000.nii
│ │─── embryo_name_fuse_t001.nii
│ └─── ...
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file AstecManager-0.1.10.tar.gz
.
File metadata
- Download URL: AstecManager-0.1.10.tar.gz
- Upload date:
- Size: 30.6 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3c554e5e1022b728abf6684463bb77729edeabef7d5658715d4289e939cf9dac |
|
MD5 | 8747aafb09ed76c597dced37bae9f07f |
|
BLAKE2b-256 | 18fd299d42dbbd90db5b61fd1138bfe91fedc9bb8e59880a3d681ab80f137ef5 |
File details
Details for the file AstecManager-0.1.10-py3-none-any.whl
.
File metadata
- Download URL: AstecManager-0.1.10-py3-none-any.whl
- Upload date:
- Size: 31.4 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1519aad63cc33bad6dc92c76b92ef2e008a000a8f42426aacfe168f4d93def75 |
|
MD5 | 453ebc30b2e204cea10a9a27f2243d54 |
|
BLAKE2b-256 | 2bed96ec125d0db4b927f560fd7053e79998a9831fa580118324e39aa64f2de1 |