Skip to main content

This repository contains an implementation of many attention mechanism models.

Project description

Attention-Mechanism-Pytorch

This repository contains an implementation of many attention mechanism models.

Change Log

  • Published Initial Attention Models, 2024-8-12.

目录


1. External Attention Usage

1.1. Paper

"Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks"

1.2. Overview

1.3. Usage Code

from model.attention.ExternalAttention import ExternalAttention
import torch

input=torch.randn(50,49,512)
ea = ExternalAttention(d_model=512,S=8)
output=ea(input)
print(output.shape)

2. Self Attention Usage

2.1. Paper

"Attention Is All You Need"

1.2. Overview

1.3. Usage Code

from model.attention.SelfAttention import ScaledDotProductAttention
import torch

input=torch.randn(50,49,512)
sa = ScaledDotProductAttention(d_model=512, d_k=512, d_v=512, h=8)
output=sa(input,input,input)
print(output.shape)

3. Simplified Self Attention Usage

3.1. Paper

SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks (ICML 2021)

3.2. Overview

3.3. Usage Code

from model.attention.SimplifiedSelfAttention import SimplifiedScaledDotProductAttention
import torch

input=torch.randn(50,49,512)
ssa = SimplifiedScaledDotProductAttention(d_model=512, h=8)
output=ssa(input,input,input)
print(output.shape)

4. Squeeze-and-Excitation Attention Usage

4.1. Paper

"Squeeze-and-Excitation Networks"

4.2. Overview

4.3. Usage Code

from model.attention.SEAttention import SEAttention
import torch

input=torch.randn(50,512,7,7)
se = SEAttention(channel=512,reduction=8)
output=se(input)
print(output.shape)

5. SK Attention Usage

5.1. Paper

"Selective Kernel Networks"

5.2. Overview

5.3. Usage Code

from model.attention.SKAttention import SKAttention
import torch

input=torch.randn(50,512,7,7)
se = SKAttention(channel=512,reduction=8)
output=se(input)
print(output.shape)

6. CBAM Attention Usage

6.1. Paper

"CBAM: Convolutional Block Attention Module"

6.2. Overview

6.3. Usage Code

from model.attention.CBAM import CBAMBlock
import torch

input=torch.randn(50,512,7,7)
kernel_size=input.shape[2]
cbam = CBAMBlock(channel=512,reduction=16,kernel_size=kernel_size)
output=cbam(input)
print(output.shape)

7. BAM Attention Usage

7.1. Paper

"BAM: Bottleneck Attention Module"

7.2. Overview

7.3. Usage Code

from model.attention.BAM import BAMBlock
import torch

input=torch.randn(50,512,7,7)
bam = BAMBlock(channel=512,reduction=16,dia_val=2)
output=bam(input)
print(output.shape)

8. ECA Attention Usage

8.1. Paper

"ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks"

8.2. Overview

8.3. Usage Code

from model.attention.ECAAttention import ECAAttention
import torch

input=torch.randn(50,512,7,7)
eca = ECAAttention(kernel_size=3)
output=eca(input)
print(output.shape)

9. DANet Attention Usage

9.1. Paper

"Dual Attention Network for Scene Segmentation"

9.2. Overview

9.3. Usage Code

from model.attention.DANet import DAModule
import torch

input=torch.randn(50,512,7,7)
danet=DAModule(d_model=512,kernel_size=3,H=7,W=7)
print(danet(input).shape)

10. Pyramid Split Attention Usage

10.1. Paper

"EPSANet: An Efficient Pyramid Split Attention Block on Convolutional Neural Network"

10.2. Overview

10.3. Usage Code

from model.attention.PSA import PSA
import torch

input=torch.randn(50,512,7,7)
psa = PSA(channel=512,reduction=8)
output=psa(input)
print(output.shape)

11. Efficient Multi-Head Self-Attention Usage

11.1. Paper

"ResT: An Efficient Transformer for Visual Recognition"

11.2. Overview

11.3. Usage Code

from model.attention.EMSA import EMSA
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,64,512)
emsa = EMSA(d_model=512, d_k=512, d_v=512, h=8,H=8,W=8,ratio=2,apply_transform=True)
output=emsa(input,input,input)
print(output.shape)
    

12. Shuffle Attention Usage

12.1. Paper

"SA-NET: SHUFFLE ATTENTION FOR DEEP CONVOLUTIONAL NEURAL NETWORKS"

12.2. Overview

12.3. Usage Code

from model.attention.ShuffleAttention import ShuffleAttention
import torch
from torch import nn
from torch.nn import functional as F


input=torch.randn(50,512,7,7)
se = ShuffleAttention(channel=512,G=8)
output=se(input)
print(output.shape)
 

13. MUSE Attention Usage

13.1. Paper

"MUSE: Parallel Multi-Scale Attention for Sequence to Sequence Learning"

13.2. Overview

13.3. Usage Code

from model.attention.MUSEAttention import MUSEAttention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,49,512)
sa = MUSEAttention(d_model=512, d_k=512, d_v=512, h=8)
output=sa(input,input,input)
print(output.shape)

14. SGE Attention Usage

14.1. Paper

Spatial Group-wise Enhance: Improving Semantic Feature Learning in Convolutional Networks

14.2. Overview

14.3. Usage Code

from model.attention.SGE import SpatialGroupEnhance
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,512,7,7)
sge = SpatialGroupEnhance(groups=8)
output=sge(input)
print(output.shape)

15. A2 Attention Usage

15.1. Paper

A2-Nets: Double Attention Networks

15.2. Overview

15.3. Usage Code

from model.attention.A2Atttention import DoubleAttention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,512,7,7)
a2 = DoubleAttention(512,128,128,True)
output=a2(input)
print(output.shape)

16. AFT Attention Usage

16.1. Paper

An Attention Free Transformer

16.2. Overview

16.3. Usage Code

from model.attention.AFT import AFT_FULL
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,49,512)
aft_full = AFT_FULL(d_model=512, n=49)
output=aft_full(input)
print(output.shape)

17. Outlook Attention Usage

17.1. Paper

VOLO: Vision Outlooker for Visual Recognition"

17.2. Overview

17.3. Usage Code

from model.attention.OutlookAttention import OutlookAttention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,28,28,512)
outlook = OutlookAttention(dim=512)
output=outlook(input)
print(output.shape)

18. ViP Attention Usage

18.1. Paper

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition"

18.2. Overview

18.3. Usage Code

from model.attention.ViP import WeightedPermuteMLP
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(64,8,8,512)
seg_dim=8
vip=WeightedPermuteMLP(512,seg_dim)
out=vip(input)
print(out.shape)

19. CoAtNet Attention Usage

19.1. Paper

CoAtNet: Marrying Convolution and Attention for All Data Sizes"

19.2. Overview

None

19.3. Usage Code

from model.attention.CoAtNet import CoAtNet
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,3,224,224)
mbconv=CoAtNet(in_ch=3,image_size=224)
out=mbconv(input)
print(out.shape)

20. HaloNet Attention Usage

20.1. Paper

Scaling Local Self-Attention for Parameter Efficient Visual Backbones"

20.2. Overview

20.3. Usage Code

from model.attention.HaloAttention import HaloAttention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,512,8,8)
halo = HaloAttention(dim=512,
    block_size=2,
    halo_size=1,)
output=halo(input)
print(output.shape)

21. Polarized Self-Attention Usage

21.1. Paper

Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

21.2. Overview

21.3. Usage Code

from model.attention.PolarizedSelfAttention import ParallelPolarizedSelfAttention,SequentialPolarizedSelfAttention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,512,7,7)
psa = SequentialPolarizedSelfAttention(channel=512)
output=psa(input)
print(output.shape)

22. CoTAttention Usage

22.1. Paper

Contextual Transformer Networks for Visual Recognition---arXiv 2021.07.26

22.2. Overview

22.3. Usage Code

from model.attention.CoTAttention import CoTAttention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,512,7,7)
cot = CoTAttention(dim=512,kernel_size=3)
output=cot(input)
print(output.shape)

23. Residual Attention Usage

23.1. Paper

Residual Attention: A Simple but Effective Method for Multi-Label Recognition---ICCV2021

23.2. Overview

23.3. Usage Code

from model.attention.ResidualAttention import ResidualAttention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,512,7,7)
resatt = ResidualAttention(channel=512,num_class=1000,la=0.2)
output=resatt(input)
print(output.shape)

24. S2 Attention Usage

24.1. Paper

S²-MLPv2: Improved Spatial-Shift MLP Architecture for Vision---arXiv 2021.08.02

24.2. Overview

24.3. Usage Code

from model.attention.S2Attention import S2Attention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,512,7,7)
s2att = S2Attention(channels=512)
output=s2att(input)
print(output.shape)

25. GFNet Attention Usage

25.1. Paper

Global Filter Networks for Image Classification---arXiv 2021.07.01

25.2. Overview

25.3. Usage Code - Implemented by Wenliang Zhao (Author)

from model.attention.gfnet import GFNet
import torch
from torch import nn
from torch.nn import functional as F

x = torch.randn(1, 3, 224, 224)
gfnet = GFNet(embed_dim=384, img_size=224, patch_size=16, num_classes=1000)
out = gfnet(x)
print(out.shape)

26. TripletAttention Usage

26.1. Paper

Rotate to Attend: Convolutional Triplet Attention Module---CVPR 2021

26.2. Overview

26.3. Usage Code - Implemented by digantamisra98

from model.attention.TripletAttention import TripletAttention
import torch
from torch import nn
from torch.nn import functional as F
input=torch.randn(50,512,7,7)
triplet = TripletAttention()
output=triplet(input)
print(output.shape)

27. Coordinate Attention Usage

27.1. Paper

Coordinate Attention for Efficient Mobile Network Design---CVPR 2021

27.2. Overview

27.3. Usage Code - Implemented by Andrew-Qibin

from model.attention.CoordAttention import CoordAtt
import torch
from torch import nn
from torch.nn import functional as F

inp=torch.rand([2, 96, 56, 56])
inp_dim, oup_dim = 96, 96
reduction=32

coord_attention = CoordAtt(inp_dim, oup_dim, reduction=reduction)
output=coord_attention(inp)
print(output.shape)

28. MobileViT Attention Usage

28.1. Paper

MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer---ArXiv 2021.10.05

28.2. Overview

28.3. Usage Code

from model.attention.MobileViTAttention import MobileViTAttention
import torch
from torch import nn
from torch.nn import functional as F

if __name__ == '__main__':
    m=MobileViTAttention()
    input=torch.randn(1,3,49,49)
    output=m(input)
    print(output.shape)  #output:(1,3,49,49)
    

29. ParNet Attention Usage

29.1. Paper

Non-deep Networks---ArXiv 2021.10.20

29.2. Overview

29.3. Usage Code

from model.attention.ParNetAttention import *
import torch
from torch import nn
from torch.nn import functional as F

if __name__ == '__main__':
    input=torch.randn(50,512,7,7)
    pna = ParNetAttention(channel=512)
    output=pna(input)
    print(output.shape) #50,512,7,7
    

30. UFO Attention Usage

30.1. Paper

UFO-ViT: High Performance Linear Vision Transformer without Softmax---ArXiv 2021.09.29

30.2. Overview

30.3. Usage Code

from model.attention.UFOAttention import *
import torch
from torch import nn
from torch.nn import functional as F

if __name__ == '__main__':
    input=torch.randn(50,49,512)
    ufo = UFOAttention(d_model=512, d_k=512, d_v=512, h=8)
    output=ufo(input,input,input)
    print(output.shape) #[50, 49, 512]
    

31. ACmix Attention Usage

31.1. Paper

On the Integration of Self-Attention and Convolution

31.2. Usage Code

from model.attention.ACmix import ACmix
import torch

if __name__ == '__main__':
    input=torch.randn(50,256,7,7)
    acmix = ACmix(in_planes=256, out_planes=256)
    output=acmix(input)
    print(output.shape)
    

32. MobileViTv2 Attention Usage

32.1. Paper

Separable Self-attention for Mobile Vision Transformers---ArXiv 2022.06.06

32.2. Overview

32.3. Usage Code

from model.attention.MobileViTv2Attention import MobileViTv2Attention
import torch
from torch import nn
from torch.nn import functional as F

if __name__ == '__main__':
    input=torch.randn(50,49,512)
    sa = MobileViTv2Attention(d_model=512)
    output=sa(input)
    print(output.shape)
    

33. DAT Attention Usage

33.1. Paper

Vision Transformer with Deformable Attention---CVPR2022

33.2. Usage Code

from model.attention.DAT import DAT
import torch

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = DAT(
        img_size=224,
        patch_size=4,
        num_classes=1000,
        expansion=4,
        dim_stem=96,
        dims=[96, 192, 384, 768],
        depths=[2, 2, 6, 2],
        stage_spec=[['L', 'S'], ['L', 'S'], ['L', 'D', 'L', 'D', 'L', 'D'], ['L', 'D']],
        heads=[3, 6, 12, 24],
        window_sizes=[7, 7, 7, 7] ,
        groups=[-1, -1, 3, 6],
        use_pes=[False, False, True, True],
        dwc_pes=[False, False, False, False],
        strides=[-1, -1, 1, 1],
        sr_ratios=[-1, -1, -1, -1],
        offset_range_factor=[-1, -1, 2, 2],
        no_offs=[False, False, False, False],
        fixed_pes=[False, False, False, False],
        use_dwc_mlps=[False, False, False, False],
        use_conv_patches=False,
        drop_rate=0.0,
        attn_drop_rate=0.0,
        drop_path_rate=0.2,
    )
    output=model(input)
    print(output[0].shape)
    

34. CrossFormer Attention Usage

34.1. Paper

CROSSFORMER: A VERSATILE VISION TRANSFORMER HINGING ON CROSS-SCALE ATTENTION---ICLR 2022

34.2. Usage Code

from model.attention.Crossformer import CrossFormer
import torch

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = CrossFormer(img_size=224,
        patch_size=[4, 8, 16, 32],
        in_chans= 3,
        num_classes=1000,
        embed_dim=48,
        depths=[2, 2, 6, 2],
        num_heads=[3, 6, 12, 24],
        group_size=[7, 7, 7, 7],
        mlp_ratio=4.,
        qkv_bias=True,
        qk_scale=None,
        drop_rate=0.0,
        drop_path_rate=0.1,
        ape=False,
        patch_norm=True,
        use_checkpoint=False,
        merge_size=[[2, 4], [2,4], [2, 4]]
    )
    output=model(input)
    print(output.shape)
    

35. MOATransformer Attention Usage

35.1. Paper

Aggregating Global Features into Local Vision Transformer

35.2. Usage Code

from model.attention.MOATransformer import MOATransformer
import torch

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = MOATransformer(
        img_size=224,
        patch_size=4,
        in_chans=3,
        num_classes=1000,
        embed_dim=96,
        depths=[2, 2, 6],
        num_heads=[3, 6, 12],
        window_size=14,
        mlp_ratio=4.,
        qkv_bias=True,
        qk_scale=None,
        drop_rate=0.0,
        drop_path_rate=0.1,
        ape=False,
        patch_norm=True,
        use_checkpoint=False
    )
    output=model(input)
    print(output.shape)
    

36. CrissCrossAttention Attention Usage

36.1. Paper

CCNet: Criss-Cross Attention for Semantic Segmentation

36.2. Usage Code

from model.attention.CrissCrossAttention import CrissCrossAttention
import torch

if __name__ == '__main__':
    input=torch.randn(3, 64, 7, 7)
    model = CrissCrossAttention(64)
    outputs = model(input)
    print(outputs.shape)
    

37. Axial_attention Attention Usage

37.1. Paper

Axial Attention in Multidimensional Transformers

37.2. Usage Code

from model.attention.Axial_attention import AxialImageTransformer
import torch

if __name__ == '__main__':
    input=torch.randn(3, 128, 7, 7)
    model = AxialImageTransformer(
        dim = 128,
        depth = 12,
        reversible = True
    )
    outputs = model(input)
    print(outputs.shape)
    

38. Frequency Channel Attention Usage

38.1. Paper

FcaNet: Frequency Channel Attention Networks (ICCV 2021)

38.2. Overview

38.3. Usage Code

from model.attention.FCA import MultiSpectralAttentionLayer
import torch

if __name__ == "__main__":
    input = torch.randn(32, 128, 64, 64) # (b, c, h, w)
    fca_layer = MultiSpectralAttentionLayer(channel = 128, dct_h = 64, dct_w = 64, reduction = 16, freq_sel_method = 'top16')
    output = fca_layer(input)
    print(output.shape)
    

39. Attention Augmented Convolutional Networks Usage

39.1. Paper

Attention Augmented Convolutional Networks (ICCV 2019)

39.2. Overview

39.3. Usage Code

from model.attention.AAAttention import AugmentedConv
import torch

if __name__ == "__main__":
    input = torch.randn((16, 3, 32, 32))
    augmented_conv = AugmentedConv(in_channels=3, out_channels=64, kernel_size=3, dk=40, dv=4, Nh=4, relative=True, stride=2, shape=16)
    output = augmented_conv(input)
    print(output.shape)
    

40. Global Context Attention Usage

40.1. Paper

GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond (ICCVW 2019 Best Paper)

Global Context Networks (TPAMI 2020)

40.2. Overview

40.3. Usage Code

from model.attention.GCAttention import GCModule
import torch

if __name__ == "__main__":
    input = torch.randn(16, 64, 32, 32)
    gc_layer = GCModule(64)
    output = gc_layer(input)
    print(output.shape)
    

41. Linear Context Transform Attention Usage

41.1. Paper

Linear Context Transform Block (AAAI 2020)

41.2. Overview

41.3. Usage Code

from model.attention.LCTAttention import LCT
import torch

if __name__ == "__main__":
    x = torch.randn(16, 64, 32, 32)
    attn = LCT(64, 8)
    y = attn(x)
    print(y.shape)
    

42. Gated Channel Transformation Usage

42.1. Paper

Gated Channel Transformation for Visual Recognition (CVPR 2020)

42.2. Overview

42.3. Usage Code

from model.attention.GCTAttention import GCT
import torch

if __name__ == "__main__":
    input = torch.randn(16, 64, 32, 32)
    gct_layer = GCT(64)
    output = gct_layer(input)
    print(output.shape)
    

43. Gaussian Context Attention Usage

43.1. Paper

Gaussian Context Transformer (CVPR 2021)

43.2. Overview

43.3. Usage Code

from model.attention.GaussianAttention import GCA
import torch

if __name__ == "__main__":
    input = torch.randn(16, 64, 32, 32)
    gca_layer = GCA(64)
    output = gca_layer(input)
    print(output.shape)
    

Acknowledgements

During the development of this project, the following open-source projects provided significant help and support. We hereby express our sincere gratitude:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

attentionmechanism-1.0.0.tar.gz (14.2 kB view details)

Uploaded Source

Built Distribution

AttentionMechanism-1.0.0-py3-none-any.whl (8.3 kB view details)

Uploaded Python 3

File details

Details for the file attentionmechanism-1.0.0.tar.gz.

File metadata

  • Download URL: attentionmechanism-1.0.0.tar.gz
  • Upload date:
  • Size: 14.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for attentionmechanism-1.0.0.tar.gz
Algorithm Hash digest
SHA256 6f1c08f225a2173bed391b157158f2015f5678b6027a3c24ef067046002f8510
MD5 19bdb55b1517113485b6608951f9d782
BLAKE2b-256 75d88436c7be9afa4800050344c692120a8ade96a62b155733a7bb4d6ccd3927

See more details on using hashes here.

File details

Details for the file AttentionMechanism-1.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for AttentionMechanism-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3ae9cf6b87fa7dba20965322742cb34acc550284f8173891ca635310cd6463aa
MD5 6d9c460845240d02ff9a22f1b9837f66
BLAKE2b-256 c2c18eece36a33861240db3ebe859b1d8ce4c0920c3b2ea2af42956bcc0c89cb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page