A neural network for structure parameter determination
Project description
Auriga
Auriga neural net predicts age, extinction, and distance to stellar populations
Installation:
pip install auriga
(requires Python3)
Keywords:
positional arguments:
tableIn Input table with Gaia DR2 source ids and cluster ids
optional arguments:
-h, --help show this help message and exit
--tutorial Use included test.fits or test.csv files as inputs
--tableOut TABLEOUT Prefix of the csv file into which the cluster properties should be written, default tableIn-out
--iters ITERS Number of iterations of each cluster is passed through Auriga to generate the errors, default 10
--localFlux Download necessary flux from Gaia archive for all source ids, default True
--saveFlux SAVEFLUX If downloading flux, prefix of file where to save it, default empty
--silent Suppress print statements, default False
--cluster CLUSTER Column with cluster membership
--source_id SOURCE_ID
Column with Gaia DR2 source id,
--gaiaFluxErrors If loading flux, whether uncertainties in Gaia bands have been converted from flux to magnitude, default True
--g G If loading flux, column for G magnitude
--bp BP If loading flux, column for BP magnitude
--rp RP If loading flux, column for RP magnitude
--j J If loading flux, column for J magnitude
--h H If loading flux, column for H magnitude
--k K If loading flux, column for K magnitude
--parallax PARALLAX If loading flux, column for parallax
--eg EG If loading flux, column for uncertainty in G magnitude
--ebp EBP If loading flux, column for uncertainty in BP magnitude
--erp ERP If loading flux, column for uncertainty in RP magnitude
--ej EJ If loading flux, column for uncertainty in J magnitude
--eh EH If loading flux, column for uncertainty in H magnitude
--ek EK If loading flux, column for uncertainty in K magnitude
--eparallax EPARALLAX
If loading flux, column for uncertainty in parallax
--gf GF If uncertainties have not been converted to magnitudes, column for G flux
--bpf BPF If uncertainties have not been converted to magnitudes, column for BP flux
--rpf RPF If uncertainties have not been converted to magnitudes, column for RP flux
--egf EGF If uncertainties have not been converted to magnitudes, column for uncertainty in G flux
--ebpf EBPF If uncertainties have not been converted to magnitudes, column for uncertainty in BP flux
--erpf ERPF If uncertainties have not been converted to magnitudes, column for uncertainty in RP flux
--memoryOnly Store table only in memory without saving to disk
--ver VER Version of Gaia data to download, default DR3
Examples:
Downloading photometry from the Gaia Archive for the sources defined in the fits table, saving the fluxes, and generating the outputs
auriga test.fits --tableOut test-out --saveFlux test --tutorial
Using previously downloaded fluxes to generate predictions. 20 implementations of each cluster are generated instead of 10, to estimate the uncertainties in the cluster parameters
auriga test.csv --localFlux --iters=20 --tutorial
Using previously downloaded fluxes, defining all the necessary columns
auriga test.fits --localFlux --gaiaFluxErrors --g phot_g_mean_mag --bp phot_bp_mean_mag \
--rp phot_rp_mean_mag --j j_m --h h_m --k ks_m --ej j_msigcom --eh h_msigcom \
--ek ks_msigcom --eparallax parallax_error --tutorial --silent
Using from within a code, outside of a command line
from auriga.auriga import getClusterAge
t=Table.read('test.csv')
out=getClusterAge(t,localFlux=True)
out=getClusterAge('test.csv',tutorial=True,memoryOnly=True)
Required packages:
- Astropy
- Astroquery
- Pytorch
- Pandas
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file Auriga-1.1.tar.gz
.
File metadata
- Download URL: Auriga-1.1.tar.gz
- Upload date:
- Size: 2.7 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 853eb962bd54f7c07a0e524a273d3c40dca537513b293dbb6b6f7e58394c969d |
|
MD5 | e75d1f086eabae45343eb593b48f1eda |
|
BLAKE2b-256 | 76238232a2d49525d1ac84d3dbb2a63b4dee7c3ee48f1bbf935936f24e2d6244 |
File details
Details for the file Auriga-1.1-py3-none-any.whl
.
File metadata
- Download URL: Auriga-1.1-py3-none-any.whl
- Upload date:
- Size: 2.7 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f348fab1d35398210de4996c277e5ea4e443eb0bbccf880fb9010b5520b6ecc2 |
|
MD5 | 26a81abb7d336297684dc675a8acda93 |
|
BLAKE2b-256 | e46135018f5695cb4bf6baf9496cc0aa8741568f4822c815214de6ae7db6ecf0 |