Skip to main content

Make any model compatible with transformer_lens

Project description

Auto_HookPoint

Auto_HookPoint is a Python library that makes it easy to integrate arbitrary pytorch models with transformer_lens. This happens via an auto_hook function that wraps your pytorch model and applies a HookPoint for every nn.Module and most nn.Parameter that are part of the model.

Features

  • Works with both nn.Module and nn.Parameter operations
  • Can be used both as a class decorator or on an already instantiated model
  • Makes code cleaner

Installation

pip install Auto_HookPoint

Usage

Usage as decorator

from Auto_HookPoint import auto_hook
import torch.nn as nn

@auto_hook
class MyModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(10, 10)
        #self.fc1_hook_point = HookPoint() NOW NOT NEEDED

    def forward(self, x):
        # self.fc1_hook_point(self.fc1(x)) NOW NOT NEEDED
        return self.fc1(x)

model = MyModel()
print(model.hook_dict.items())  # dict_items([('hook_point', HookPoint()), ('fc1.hook_point', HookPoint())])

Wrap an instance

AutoHooked can also work with models that use nn.Parameter, such as this AutoEncoder example:

from Auto_HookPoint import auto_hook
import torch
from torch import nn

# taken from neel nandas excellent autoencoder tutorial: https://colab.research.google.com/drive/1u8larhpxy8w4mMsJiSBddNOzFGj7_RTn#scrollTo=MYrIYDEfBtbL
class AutoEncoder(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        d_hidden = cfg["d_mlp"] * cfg["dict_mult"]
        d_mlp = cfg["d_mlp"]
        dtype = torch.float32
        torch.manual_seed(cfg["seed"])
        self.W_enc = nn.Parameter(
            torch.nn.init.kaiming_uniform_(
                torch.empty(d_mlp, d_hidden, dtype=dtype)))
        self.W_dec = nn.Parameter(
            torch.nn.init.kaiming_uniform_(
                torch.empty(d_hidden, d_mlp, dtype=dtype)))
        self.b_enc = nn.Parameter(
            torch.zeros(d_hidden, dtype=dtype)
        )
        self.b_dec = nn.Parameter(
            torch.zeros(d_mlp, dtype=dtype)
        )

    def forward(self, x):
        x_cent = x - self.b_dec
        acts = torch.relu(x_cent @ self.W_enc + self.b_enc)
        x_reconstruct = acts @ self.W_dec + self.b_dec
        return x_reconstruct

autoencoder = auto_hook(AutoEncoder({"d_mlp": 10, "dict_mult": 10, "l1_coeff": 10, "seed": 1}))
print(autoencoder.hook_dict.items())
# dict_items([('hook_point', HookPoint()), ('W_enc.hook_point', HookPoint()), ('W_dec.hook_point', HookPoint()), ('b_enc.hook_point', HookPoint()), ('b_dec.hook_point', HookPoint())])

If this was to be done manually the code would be way less clean:

class AutoEncoder(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        d_hidden = cfg['d_mlp'] * cfg['dict_mult']
        d_mlp = cfg['d_mlp']
        dtype = torch.float32
        torch.manual_seed(cfg['seed'])
        self.W_enc = nn.Parameter(
            torch.nn.init.kaiming_uniform_(
                torch.empty(d_mlp, d_hidden, dtype=dtype)
            )
        )
        self.W_enc_hook_point = HookPoint()
        self.W_dec = nn.Parameter(
            torch.nn.init.kaiming_uniform_(
                torch.empty(d_hidden, d_mlp, dtype=dtype)
            )
        )
        self.W_dec_hook_point = HookPoint()
        self.b_enc = nn.Parameter(
            torch.zeros(d_hidden, dtype=dtype)
        )
        self.b_enc_hook_point = HookPoint()
        self.b_dec = nn.Parameter(
            torch.zeros(d_mlp, dtype=dtype)
        )
        self.b_dec_hook_point = HookPoint()

    def forward(self, x):
        x_cent = self.b_dec_hook_point(x - self.b_dec)
        acts = torch.relu(self.b_enc_hook_point(self.W_enc_hook_point(x_cent @ self.W_enc) + self.b_enc))
        x_reconstruct = self.b_dec_hook_point(self.W_dec_hook_point(acts @ self.W_dec) + self.b_dec)
        return x_reconstruct

Note

There might be edge cases not supported for some reason, so a function 'check_auto_hook' is provided to run the model class on all internal tests. Note however that these might not always be informative, but can give hints/indications.

from Auto_HookPoint import check_auto_hook
hooked_model = auto_hook(model)
input_kwargs = {'x': torch.randn(10, 10)}
init_kwargs = {'cfg': {'d_mlp': 10, 'dict_mult': 10, 'l1_coeff': 10, 'seed': 1}}
check_auto_hook(AutoEncoder, input_kwargs, init_kwargs)

If strict is set to True, a runtime error will be raised if the tests fail; otherwise, a warning will be issued.

Note on Backward Hooks (bwd_hooks)

Some issues might occur when using backward hooks. As auto_hook hooks anything that is an instance of nn.Module, modules that return non-tensor objects will also be hooked. It is advised to only use backward hooks on hookpoints that take tensors as input.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

auto_hookpoint-0.3.0.tar.gz (11.2 kB view details)

Uploaded Source

Built Distribution

auto_hookpoint-0.3.0-py3-none-any.whl (13.1 kB view details)

Uploaded Python 3

File details

Details for the file auto_hookpoint-0.3.0.tar.gz.

File metadata

  • Download URL: auto_hookpoint-0.3.0.tar.gz
  • Upload date:
  • Size: 11.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for auto_hookpoint-0.3.0.tar.gz
Algorithm Hash digest
SHA256 4c72d69859cbcdf79cb28cce11ab906be980ccd69013f874627cb20e81b4e024
MD5 ac47d300663742662e35aceb5784e10f
BLAKE2b-256 2637cca40eec7c26db34b2f6d41e655d149098acc5ecd6888a5b09be9502d2c6

See more details on using hashes here.

File details

Details for the file auto_hookpoint-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for auto_hookpoint-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 85c68d8fbd5a1af895548e88c2ff6c88358d0f1a49622b94b45d9cbe8ef9a11f
MD5 076b5ae78e05675ca25fa525dd652ca1
BLAKE2b-256 c4a1aebd13bee97d04f0d2f3a439cd967aea584cb0d38fee53a49d401afb6500

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page