Skip to main content

A small example package

Project description

Auto_ML_C 0.0.10

Illustrate:

​ 这是崔连山和小伙伴们的机器学习拓展包,代有浓厚的社会主义开源分享精神,极富创造力和战斗力。在这里让我们为他们鼓掌 :clinking_glasses:

Spend

测试集数据位置:{Example}

配置如下:

Windows Windows MacOS Linux
型号 i7-9750H i7-9750H M1 E5-2640 V4
核心 6核心12线程 6核心12线程 8核心 20核心40线程
频率 2.67GHz 3.2GHz 2.40GHz

运行速度对比结果如下:

未集成 Windows1 Windows2 MacOS Linux
ALL_FUNCTION 47.364 43.681 34.013 ==27.282==
binary_ROC() 45.809 42.964 32.751 ==32.143==
auto_model() 53.498 48.649 ==38.267== 40.794
estimator_violion() 1.191 ==1.021== 1.678 2.395
集成 Windows1 Windows2 MacOS Linux
binary_ROC() 46.2 s 43.2 s CPU times: user 4.82 s, sys: 365 ms, total: 5.18 s Wall time: ==32.9s== CPU times: user 9.59 s, sys: 3.89 s, total: 13.5 s Wall time: 33.3 s
auto_model() 50.4 s 47.1 s CPU times: user 9.75 s, sys: 247 ms, total: 10 s Wall time: ==38.1 s== CPU times: user 15.1 s, sys: 1.68 s, total: 16.8 s Wall time: 41.1 s
estimator_violion() 1.16 s Wall time: ==1.01 s== CPU times: user 2.02 s, sys: 70.1 ms, total: 2.09 s Wall time: 1.69 s CPU times: user 3.85 s, sys: 2.32 s, total: 6.17 s Wall time: 2.23 s

Request_install

可以参考学习当前目录下的环境备份:Auto_ML_C.yaml

主要是涉及到的软件如下:

Package 最低版本——待检测
python=3.8.10
seaborn=0.11.2
pandas=1.3.3
matplotlib=3.4.2
numpy=1.20.3

Content:

​ 该包是基于Sklearn,imblance等机器学习拓展包之上的Package,共计划分为两个部分,

  • 分类任务

    1. binary_classfication.py

      内部可用函数如下

      函数名 功能 返回值
      cal_add_1(num1,num2):wave: 简单的欢迎函数 num1,num2
      LogisticRegressionCV_mdoel(X, Y,cv)
      SGDClassifier_model(X,Y,cv)
      LinearDiscriminantAnalysis_model(X, Y,cv)
      LinearSVC_model(X, Y,cv)
      SVC_model(X, Y,cv)
      DecisionTreeClassifier_model(X,Y,cv)
      AdaBoostClassifier_model(X,Y,cv)
      BaggingClassifier_model(X, Y,cv)
      GradientBoostingClassifier_model(X, Y,cv)
      RandomForestClassifier_model(X, Y,cv)
      KNeighborsClassifier_model(X, Y,cv)
      BernoulliNB_model(X, Y,cv)
      GaussianNB_model(X,Y,cv)
      下面是总函数
      binary_ROC(X,Y,k,fig_name) 绘制标量超参数搜索下最佳的ROC fig
      auto_model(X, Y, k) 模型的标量超参数搜索结果 Auc_data, Acc_data,
      Recall_data, Precision_data
      estimator_violion(df1,df2,fig_name) 为auto_model结果的Dataframe绘制小提琴图 fig
    2. 多分类函数

      等待

    3. 特征筛选函数Feature_struction

    4. waited

How to Use

Installation

# Method 1
# Create a new environment, here is conda as an example
conda create --name Auto_ML_C python=3.8.10

# Activate the newly created environment
conda activate Auto_ML_C

# Installation package
pip install Auto_ML_C==0.0.8

# Suggest the pipeline of Jupyter notebook [optional, recommended]
conda install jupyter notebook
conda install ipykernel 
python -m ipykernel install --user --name Auto_ML_C --display-name   "Auto_ML_C"
# Install Sklearn 0.6.  this will fixed next version
conda install -c conda-forge sklearn-contrib-lightning

# Method2
# Use the yaml environment file on the GitHub homepage to directly copy the current environment
conda env create -n Auto_ML_C -f Auto_ML_C.yaml

# Activate the newly created environment
conda activate 

# Suggest the pipeline of Jupyter notebook [optional, recommended]
conda install jupyter notebook
conda install ipykernel 
python -m ipykernel install --user --name Auto_ML_C --display-name   "Auto_ML_C"

Feature_struction

# 

Binary Classication

# Here is an example of the function binary_classfication_ws  
# 这里以函数binary_classfication_ws举例

# 开始加载环境
import pandas as pd
import numpy as np
import auto_ml_c.binary_classfication as abc

# 读取测试数据
df = pd.read_csv("2_data_deal_smote.csv")
X = df.iloc[:,:-1]
Y = df["label"]
score = 'accuracy'

# The first function, draw ROC image
tmp_a = abc.binary_ROC(X,Y,cv,"111","accuracy")

# The second function, get Auc_data, Acc_data, Recall_data, Precision_data
tmp_b1,tmp_b2,tmp_b3,tmp_b4 = abc.auto_model(X,Y,cv,"accuracy")

# The third function, draw the evaluation graph obtained by function 2 auto_model
tmp_c = abc.estimator_violion(tmp_b1,tmp_b2,"Violionplot")
binary_ROC

estimator_violion

ConTact

VX:Cuizy13390906310_ic

QQ:1776228595

E-mail:1776228595@qq.com

GitHub:地址待填写

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Auto_ML_C-0.0.11.tar.gz (12.5 kB view details)

Uploaded Source

Built Distribution

Auto_ML_C-0.0.11-py3-none-any.whl (13.0 kB view details)

Uploaded Python 3

File details

Details for the file Auto_ML_C-0.0.11.tar.gz.

File metadata

  • Download URL: Auto_ML_C-0.0.11.tar.gz
  • Upload date:
  • Size: 12.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for Auto_ML_C-0.0.11.tar.gz
Algorithm Hash digest
SHA256 35148ef84e7db4d3f58f0cd7aef8e66a00d43f8f689fc62c6b620a8dacdf04cc
MD5 6c344766130637042d69b8e7557fc0ca
BLAKE2b-256 34762994c8eee02e4aee030d19780ff548321965e5730546172025e36b87dc62

See more details on using hashes here.

File details

Details for the file Auto_ML_C-0.0.11-py3-none-any.whl.

File metadata

  • Download URL: Auto_ML_C-0.0.11-py3-none-any.whl
  • Upload date:
  • Size: 13.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for Auto_ML_C-0.0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 50e0e33ff104608f32fc0d67610d4a9f6091110ee87e96d3c10c71916aa0e55d
MD5 62ea447c99d4d7e97493d2d26697378c
BLAKE2b-256 6b6643e12d0c40b15d53826f2f7c8422b6b3d4a973b42758b6fb8409666bddb4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page