Skip to main content

Tools for getting analysis of all classifiers and regressors

Project description

Package Installation

pip install AutoClassifierRegressor

Package Import

from AutoClassifierRegressor import regression_report_generation

from AutoClassifierRegressor import classification_report_generation

For Regression call this function with following parameters

regression_report_generation(dataframe, "target name", path="desired folder name", saveModel=True, normalisation=True)

Arguments
1. Dataframe name (required)
2. Target variable for regression (required)
3. path = name of folder (optional)
4. saveModel = if set as True then all ML models will be saved in "Models" folder (optional)
5. normalisation = if set as True data will be normalised (optional)
Example:
df=pd.read_csv("/content/sample_data/california_housing_train.csv")
regression_report_generation(df, "median_house_value", path="Housing_data", saveModel=True, normalisation=True)

For Classification call this function with following parameters

classification_report_generation(dataframe, "target label", n= no classes, path="desired folder name", saveModel=True)

Arguments
1. Dataframe name (required)
2. Target variable for classification (required)
3. n=2 for binary classification (required) and n=no of classes for multiclass classification (required)
4. path = name of folder (optional)
5. saveModel = if set as True then all ML models will be saved in "Models" folder (optional)
Example:
df=pd.read_csv("data.csv")
classification_report_generation(df, "diagnosis", n=2, path="binary_classification_reports", saveModel=True)

df = pd.read_csv('Iris.csv')
classification_report_generation(df, "Species", n=3, path="classification_model_Multiclass", saveModel=True)

Prerequisites:

1. Do necessary data processing for better results
2. Install all dependancies

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

AutoClassifierRegressor-0.0.3.tar.gz (6.4 kB view details)

Uploaded Source

Built Distribution

AutoClassifierRegressor-0.0.3-py3-none-any.whl (6.9 kB view details)

Uploaded Python 3

File details

Details for the file AutoClassifierRegressor-0.0.3.tar.gz.

File metadata

File hashes

Hashes for AutoClassifierRegressor-0.0.3.tar.gz
Algorithm Hash digest
SHA256 7d8ca53ba462bcdaea8bca13bd2721f5d8f8e1255be918bd0c63acc3e22d205f
MD5 31f9cd47f7137c0a57797620635227a3
BLAKE2b-256 79f9d238393fa21b306d09dabb2d7695b50fe7650e5fa6cc3baa9180b9e30b5d

See more details on using hashes here.

File details

Details for the file AutoClassifierRegressor-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for AutoClassifierRegressor-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 0898440151f105a3c4e22eb60fc7e951ae6100d93c1d31f47d462a07898d4d92
MD5 80432de6012d52295d2f45e63a83bb15
BLAKE2b-256 407c671a1d3ae3f7b4d55105a847d51f7a0da683487f58cdb9738c867664caf9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page