Tools for getting analysis of all classifiers and regressors
Project description
Package Installation
pip install AutoClassifierRegressor
Package Import
from AutoClassifierRegressor import regression_report_generation
from AutoClassifierRegressor import classification_report_generation
For Regression call this function with following parameters
regression_report_generation(dataframe, "target name", path="desired folder name", saveModel=True, normalisation=True)
Arguments
1. Dataframe name (required)
2. Target variable for regression (required)
3. path = name of folder (optional)
4. saveModel = if set as True then all ML models will be saved in "Models" folder (optional)
5. normalisation = if set as True data will be normalised (optional)
Example:
df=pd.read_csv("/content/sample_data/california_housing_train.csv")
regression_report_generation(df, "median_house_value", path="Housing_data", saveModel=True, normalisation=True)
For Classification call this function with following parameters
classification_report_generation(dataframe, "target label", n= no classes, path="desired folder name", saveModel=True)
Arguments
1. Dataframe name (required)
2. Target variable for classification (required)
3. n=2 for binary classification (required) and n=no of classes for multiclass classification (required)
4. path = name of folder (optional)
5. saveModel = if set as True then all ML models will be saved in "Models" folder (optional)
Example:
df=pd.read_csv("data.csv")
classification_report_generation(df, "diagnosis", n=2, path="binary_classification_reports", saveModel=True)
df = pd.read_csv('Iris.csv')
classification_report_generation(df, "Species", n=3, path="classification_model_Multiclass", saveModel=True)
Prerequisites:
1. Do necessary data processing for better results
2. Install all dependancies
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file AutoClassifierRegressor-0.0.3a0.tar.gz
.
File metadata
- Download URL: AutoClassifierRegressor-0.0.3a0.tar.gz
- Upload date:
- Size: 6.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.7.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5aa754a878e822c2abedb2210b401690e2c7c9ac2e0ac2845f8b44bf2e902c72 |
|
MD5 | 8a739ec7aaf249865fb460d82f3835e2 |
|
BLAKE2b-256 | 3734d8b703f3618816130640203520fa26f9cef6532c39d50c943784d0cebae5 |
File details
Details for the file AutoClassifierRegressor-0.0.3a0-py3-none-any.whl
.
File metadata
- Download URL: AutoClassifierRegressor-0.0.3a0-py3-none-any.whl
- Upload date:
- Size: 6.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.7.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9cbcac841317480b5c7302e93d9d4863146b63644bded54766fd95ab8f69238e |
|
MD5 | 32f814f4e9afaf66f02cdf70a6686444 |
|
BLAKE2b-256 | 063d132bb0baf8c22b2b26ee727f912acd8ba72cb9db1eea586df063c9cc6a02 |