Skip to main content

Tools for getting analysis of all classifiers and regressors

Project description

Package Installation

pip install AutoClassifierRegressor

Package Import

from AutoClassifierRegressor import regression_report_generation

from AutoClassifierRegressor import classification_report_generation

For Regression call this function with following parameters

regression_report_generation(dataframe, "target name", path="desired folder name", saveModel=True, normalisation=True)

Arguments
1. Dataframe name (required)
2. Target variable for regression (required)
3. path = name of folder (optional)
4. saveModel = if set as True then all ML models will be saved in "Models" folder (optional)
5. normalisation = if set as True data will be normalised (optional)
Example:
df=pd.read_csv("/content/sample_data/california_housing_train.csv")
regression_report_generation(df, "median_house_value", path="Housing_data", saveModel=True, normalisation=True)

For Classification call this function with following parameters

classification_report_generation(dataframe, "target label", n= no classes, path="desired folder name", saveModel=True)

Arguments
1. Dataframe name (required)
2. Target variable for classification (required)
3. n=2 for binary classification (required) and n=no of classes for multiclass classification (required)
4. path = name of folder (optional)
5. saveModel = if set as True then all ML models will be saved in "Models" folder (optional)
Example:
df=pd.read_csv("data.csv")
classification_report_generation(df, "diagnosis", n=2, path="binary_classification_reports", saveModel=True)

df = pd.read_csv('Iris.csv')
classification_report_generation(df, "Species", n=3, path="classification_model_Multiclass", saveModel=True)

Prerequisites:

1. Do necessary data processing for better results
2. Install all dependancies

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

AutoClassifierRegressor-0.0.3a0.tar.gz (6.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file AutoClassifierRegressor-0.0.3a0.tar.gz.

File metadata

File hashes

Hashes for AutoClassifierRegressor-0.0.3a0.tar.gz
Algorithm Hash digest
SHA256 5aa754a878e822c2abedb2210b401690e2c7c9ac2e0ac2845f8b44bf2e902c72
MD5 8a739ec7aaf249865fb460d82f3835e2
BLAKE2b-256 3734d8b703f3618816130640203520fa26f9cef6532c39d50c943784d0cebae5

See more details on using hashes here.

File details

Details for the file AutoClassifierRegressor-0.0.3a0-py3-none-any.whl.

File metadata

File hashes

Hashes for AutoClassifierRegressor-0.0.3a0-py3-none-any.whl
Algorithm Hash digest
SHA256 9cbcac841317480b5c7302e93d9d4863146b63644bded54766fd95ab8f69238e
MD5 32f814f4e9afaf66f02cdf70a6686444
BLAKE2b-256 063d132bb0baf8c22b2b26ee727f912acd8ba72cb9db1eea586df063c9cc6a02

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page