Skip to main content

Tools for getting analysis of all classifiers and regressors

Project description

Package Installation

    pip install AutoClassifierRegressor

Package Import

    from AutoClassifierRegressor import regression_report_generation

    from AutoClassifierRegressor import classification_report_generation

For Regression call this function with following parameters

regression_report_generation(dataframe, "target name", path="desired folder name", saveModel=True, normalisation=True)

Arguments

    1. Dataframe name (required)
    2. Target variable for regression (required)
    3. path = name of folder (optional)
    4. saveModel = if set as True then all ML models will be saved in "Models" folder (optional)
    5. normalisation = if set as True data will be normalised (optional)

Example:

    df=pd.read_csv("/content/sample_data/california_housing_train.csv")
    regression_report_generation(df, "median_house_value", path="Housing_data", saveModel=True, normalisation=True)

For Classification call this function with following parameters

classification_report_generation(dataframe, "target label", n= no classes, path="desired folder name", saveModel=True)

Arguments

    1. Dataframe name (required)
    2. Target variable for classification (required)
    3. n=2 for binary classification (required) and n=no of classes for multiclass classification (required)
    4. path = name of folder (optional)
    5. saveModel = if set as True then all ML models will be saved in "Models" folder (optional)

Example:

    df=pd.read_csv("data.csv")
    classification_report_generation(df, "diagnosis", n=2, path="binary_classification_reports", saveModel=True)

    df = pd.read_csv('Iris.csv')
    classification_report_generation(df, "Species", n=3, path="classification_model_Multiclass", saveModel=True)

Prerequisites:

1. Do necessary data processing for better results
2. Install all dependancies

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

AutoClassifierRegressor-0.0.3a1.tar.gz (6.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file AutoClassifierRegressor-0.0.3a1.tar.gz.

File metadata

File hashes

Hashes for AutoClassifierRegressor-0.0.3a1.tar.gz
Algorithm Hash digest
SHA256 81140569ed73f0c181e712fded848de69a63694f2aded63df79cdc8675614caa
MD5 6eaaf9231b3cf55cfb9f39128880a51e
BLAKE2b-256 de69c4ead8a66cb7244acec0ef024dc5a66f642b4ec9fcde67a7f01270fe1072

See more details on using hashes here.

File details

Details for the file AutoClassifierRegressor-0.0.3a1-py3-none-any.whl.

File metadata

File hashes

Hashes for AutoClassifierRegressor-0.0.3a1-py3-none-any.whl
Algorithm Hash digest
SHA256 369500c11feedac9e6d111f19e5798ebaf136d38c6047a848ce480f888e47cd4
MD5 52c8036692bbf11cd9e530e0fbc7b3d9
BLAKE2b-256 5a1c61ea90ec2327b6099b0e59db7f4d977c776e6dc91fb4a267d07712b481da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page