Skip to main content

Tools for getting analysis of all classifiers and regressors

Project description

Package Installation

    pip install AutoClassifierRegressor

Package Import

    from AutoClassifierRegressor import regression_report_generation

    from AutoClassifierRegressor import classification_report_generation

For Regression call this function with following parameters

regression_report_generation(dataframe, "target name", path="desired folder name", saveModel=True, normalisation=True)

Arguments

    1. Dataframe name (required)
    2. Target variable for regression (required)
    3. path = name of folder (optional)
    4. saveModel = if set as True then all ML models will be saved in "Models" folder (optional)
    5. normalisation = if set as True data will be normalised (optional)

Example:

    df=pd.read_csv("/content/sample_data/california_housing_train.csv")
    regression_report_generation(df, "median_house_value", path="Housing_data", saveModel=True, normalisation=True)

For Classification call this function with following parameters

classification_report_generation(dataframe, "target label", n= no classes, path="desired folder name", saveModel=True)

Arguments

    1. Dataframe name (required)
    2. Target variable for classification (required)
    3. n=2 for binary classification (required) and n=no of classes for multiclass classification (required)
    4. path = name of folder (optional)
    5. saveModel = if set as True then all ML models will be saved in "Models" folder (optional)

Example:

    df=pd.read_csv("data.csv")
    classification_report_generation(df, "diagnosis", n=2, path="binary_classification_reports", saveModel=True)

    df = pd.read_csv('Iris.csv')
    classification_report_generation(df, "Species", n=3, path="classification_model_Multiclass", saveModel=True)

Prerequisites:

1. Do necessary data processing for better results
2. Install all dependancies

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

AutoClassifierRegressor-0.0.3a2.tar.gz (6.5 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file AutoClassifierRegressor-0.0.3a2.tar.gz.

File metadata

File hashes

Hashes for AutoClassifierRegressor-0.0.3a2.tar.gz
Algorithm Hash digest
SHA256 a922fc93320b27652f0ea452cfae1352492b93b86084819505a96c2c1c65eb09
MD5 3d22cdf13982d06eedb94c0d2881bf5c
BLAKE2b-256 7230f05f8966428b131791b941b38452afd5e766a2237aee18d71d05732edec7

See more details on using hashes here.

File details

Details for the file AutoClassifierRegressor-0.0.3a2-py3-none-any.whl.

File metadata

File hashes

Hashes for AutoClassifierRegressor-0.0.3a2-py3-none-any.whl
Algorithm Hash digest
SHA256 c20887c4a28d38db250e8f6da3471d22b9fe96893b3009323ef4fb0094e0ecfb
MD5 16c1c006770b8165b08a326c75a7f32f
BLAKE2b-256 72f94d693b2a2e4ddc4c09786ff9e0a555bfdbd21b360cf3e486113646badb99

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page