Skip to main content

Tools for getting analysis of all classifiers and regressors

Project description

Package Installation

    pip install AutoClassifierRegressor

Package Import

    from AutoClassifierRegressor import regression_report_generation

    from AutoClassifierRegressor import classification_report_generation

For Regression call this function with following parameters

regression_report_generation(dataframe, "target name", path="desired folder name", saveModel=True, normalisation=True)

Arguments

    1. Dataframe name (required)
    2. Target variable for regression (required)
    3. path = name of folder (optional)
    4. saveModel = if set as True then all ML models will be saved in "Models" folder (optional)
    5. normalisation = if set as True data will be normalised (optional)

Example:

    df=pd.read_csv("/content/sample_data/california_housing_train.csv")
    regression_report_generation(df, "median_house_value", path="Housing_data", saveModel=True, normalisation=True)

For Classification call this function with following parameters

classification_report_generation(dataframe, "target label", n= no classes, path="desired folder name", saveModel=True)

Arguments

    1. Dataframe name (required)
    2. Target variable for classification (required)
    3. n=2 for binary classification (required) and n=no of classes for multiclass classification (required)
    4. path = name of folder (optional)
    5. saveModel = if set as True then all ML models will be saved in "Models" folder (optional)

Example:

    df=pd.read_csv("data.csv")
    classification_report_generation(df, "diagnosis", n=2, path="binary_classification_reports", saveModel=True)

    df = pd.read_csv('Iris.csv')
    classification_report_generation(df, "Species", n=3, path="classification_model_Multiclass", saveModel=True)

Prerequisites:

1. Do necessary data processing for better results
2. Install all dependancies

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

AutoClassifierRegressor-0.0.4.tar.gz (6.5 kB view details)

Uploaded Source

Built Distribution

AutoClassifierRegressor-0.0.4-py3-none-any.whl (7.0 kB view details)

Uploaded Python 3

File details

Details for the file AutoClassifierRegressor-0.0.4.tar.gz.

File metadata

File hashes

Hashes for AutoClassifierRegressor-0.0.4.tar.gz
Algorithm Hash digest
SHA256 b9665f4da256d3ffe5bd2675ec849d327769b7ddc508f4595746d3dc13e703d6
MD5 1c0dc2e1942386243de575120efeeb84
BLAKE2b-256 54bbac80de2df662ba23962c59561bf6a6cd302d67ec269c859929d5f62f295b

See more details on using hashes here.

File details

Details for the file AutoClassifierRegressor-0.0.4-py3-none-any.whl.

File metadata

File hashes

Hashes for AutoClassifierRegressor-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 2143fbecbc3f0de624602f84b6e0c3812e600ad7830ad3148a8a28ab99245f1c
MD5 6350f67d6819b5677c338b326a07dbc4
BLAKE2b-256 506bd2e0084d6a4fd1e35de41f816ca1bb0800f68de9244215c7c17baf2f4ef1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page