Skip to main content

Tools for getting analysis of all classifiers and regressors

Project description

Package Installation

    pip install AutoClassifierRegressor

Package Import

    from AutoClassifierRegressor import regression_report_generation

    from AutoClassifierRegressor import classification_report_generation

For Regression call this function with following parameters

regression_report_generation(dataframe, "target name", path="desired folder name", saveModel=True, normalisation=True)

Arguments

    1. Dataframe name (required)
    2. Target variable for regression (required)
    3. path = name of folder (optional)
    4. saveModel = if set as True then all ML models will be saved in "Models" folder (optional)
    5. normalisation = if set as True data will be normalised (optional)

Example:

    df=pd.read_csv("/content/sample_data/california_housing_train.csv")
    regression_report_generation(df, "median_house_value", path="Housing_data", saveModel=True, normalisation=True)

For Classification call this function with following parameters

classification_report_generation(dataframe, "target label", n= no classes, path="desired folder name", saveModel=True)

Arguments

    1. Dataframe name (required)
    2. Target variable for classification (required)
    3. n=2 for binary classification (required) and n=no of classes for multiclass classification (required)
    4. path = name of folder (optional)
    5. saveModel = if set as True then all ML models will be saved in "Models" folder (optional)

Example:

    df=pd.read_csv("data.csv")
    classification_report_generation(df, "diagnosis", n=2, path="binary_classification_reports", saveModel=True)

    df = pd.read_csv('Iris.csv')
    classification_report_generation(df, "Species", n=3, path="classification_model_Multiclass", saveModel=True)

Prerequisites:

1. Do necessary data processing for better results
2. Install all dependancies

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

AutoClassifierRegressor-0.0.4a0.tar.gz (6.5 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file AutoClassifierRegressor-0.0.4a0.tar.gz.

File metadata

File hashes

Hashes for AutoClassifierRegressor-0.0.4a0.tar.gz
Algorithm Hash digest
SHA256 c4011d9a35482451f06d1aaa9f6ecd6abf0d14b86ef60f7dd195374beebe5fdc
MD5 95f48f41931627661864dfb6292c01b2
BLAKE2b-256 77092b8c358b3e9e9f6f6f3f7857375c8673c56df8d824a38570fbb8491d7b23

See more details on using hashes here.

File details

Details for the file AutoClassifierRegressor-0.0.4a0-py3-none-any.whl.

File metadata

File hashes

Hashes for AutoClassifierRegressor-0.0.4a0-py3-none-any.whl
Algorithm Hash digest
SHA256 e6cd70a51070de9032f5ce7a9e14fdc2303406978d24a94b268ce02b5557f1c0
MD5 bc82d34106cfac8739cf43286f7c12d6
BLAKE2b-256 870816855df97b34e0ac0d7f9cfa985dadf673e01d4f87efe38bcbe93b76fd91

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page