Skip to main content

Tools for getting analysis of all classifiers and regressors

Project description

Package Installation

    pip install AutoClassifierRegressor

Package Import

    from AutoClassifierRegressor import regression_report_generation

    from AutoClassifierRegressor import classification_report_generation

For Regression call this function with following parameters

regression_report_generation(dataframe, "target name", path="desired folder name", saveModel=True, normalisation=True)

Arguments

    1. Dataframe name (required)
    2. Target variable for regression (required)
    3. path = name of folder (optional)
    4. saveModel = if set as True then all ML models will be saved in "Models" folder (optional)
    5. normalisation = if set as True data will be normalised (optional)

Example:

    df=pd.read_csv("/content/sample_data/california_housing_train.csv")
    regression_report_generation(df, "median_house_value", path="Housing_data", saveModel=True, normalisation=True)

For Classification call this function with following parameters

classification_report_generation(dataframe, "target label", n= no classes, path="desired folder name", saveModel=True)

Arguments

    1. Dataframe name (required)
    2. Target variable for classification (required)
    3. n=2 for binary classification (required) and n=no of classes for multiclass classification (required)
    4. path = name of folder (optional)
    5. saveModel = if set as True then all ML models will be saved in "Models" folder (optional)

Example:

    df=pd.read_csv("data.csv")
    classification_report_generation(df, "diagnosis", n=2, path="binary_classification_reports", saveModel=True)

    df = pd.read_csv('Iris.csv')
    classification_report_generation(df, "Species", n=3, path="classification_model_Multiclass", saveModel=True)

Output:

    1. Output will be in the form of html file with tabular analyis of all important classifiers or regressors along with poular evaluation metrics.
    2. Html file will be saved in current or in given path.
    3. All ML models will be saved in /Models folder in current or in given path.

Prerequisites:

1. Do necessary data processing for better results
2. Install all dependancies

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

AutoClassifierRegressor-0.0.5.tar.gz (6.6 kB view details)

Uploaded Source

Built Distribution

AutoClassifierRegressor-0.0.5-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file AutoClassifierRegressor-0.0.5.tar.gz.

File metadata

File hashes

Hashes for AutoClassifierRegressor-0.0.5.tar.gz
Algorithm Hash digest
SHA256 f9fc88223e78d8b7043fd5aeda68d3d7d2aa32b1382a9a7aadf1eefcef3759d8
MD5 c5f0a4a02298cef0308be900c62f47f0
BLAKE2b-256 e6246a3597f228919f9fca77acfccb1ad9c756c90064877efdef461736ae36ff

See more details on using hashes here.

File details

Details for the file AutoClassifierRegressor-0.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for AutoClassifierRegressor-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 d9d6e3a462e9fcabb9b648346f05585debaafc60589a36110441bbf8958d2803
MD5 3217771fcc1defa5aab6ba39386b17af
BLAKE2b-256 d54eb129e28e616a7e545c865dc92f8f9d5ed6eb5d8f33b678ca065b86acfe91

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page