Skip to main content

An AutoDifferentiation Library

Project description

Build Status

codecov

Click here to see full documentation

Final Project - AutoDiffCC Python Package

CS207: Systems Development for Computational Science in Fall 2019

Group 22

  • Alex Spiride
  • Maja Garbulinska
  • Matthew Finney
  • Zhiying Xu

Overview

With the evolution of science and the growing computational possibilities, differentiation plays a critical role in a wide range of scientific and industrial applications of computer science. However, the precise computation of symbolic derivatives is computationally expensive, and not even possible in all situations, whereas the finite differencing method is not always accurate or stable. Automatic differentiation, however, provides a computationally efficient way to calculate derivatives, particularly of complex functions, for applications where accuracy and performance at scale are important.

Our package AutoDiffCC provides is an easy to use package that computes derivates of scalar and vector functions using the concept of automatic differentation.

We invite you to take a look at our repo and use AutoDiffCC!

Installation Guide

AutoDiffCC supports package installation via pip. Users can install the package in the command line with the following command.

pip install autodiffcc

How To Use

To use AutoDiffCC you first have to import it. If you already have it installed, you can do it by just running:

# Import the autodiffcc package
>>> import autodiffcc as ad 

Basic Applications

There are several ways in which you can take advantage of AutoDiffCC. Below we present some examples.

Example 1

A simple example using overloaded operators is described below. If you would like to evaluate f = x * x at x = 2, first initiate an AD object x with x = ad.AD(2.0, 1.0), where 2 is the value and 1 is the derivative. Then simply define your function f = x * x and enjoy the results. You can see this example implemented below.

# Overload basic arithmetic operations
>>> x = ad.AD(val = 2.0, 1.0) 
>>> f = x * x
>>> print(f.val, f.der)
4.0 4.0

Alternatively, you can just proceed as follows:

>>> def f(x):
>>>   return x*x
>>> dfdx = differentiate(f)
>>> dfdx(x= 2.0)
4.0 # this is the derivative value at x=2 
Example 2

To use more complex function like cos(x) follow this example using our built-in module ADmath:

>>> x = AD(val = 3.0, der = 1.0)
>>> ADmath.cos(x) 
(array(-0.9899924966004454), array(-0.1411200080598672))

Again, you can also do:

>>> def f(x):
>>>   return ADmath.cos(x) 
>>> dfdx = differentiate(f)
>>> dfdx( x = 3.0)
-0.1411200080598672 # this is the derivative value evaluated at 3.0.

Offered Extentions

Root Finding

Our package offers three root finding methods. The bisection method, the newton-fourier method and the newton-raphson method.

Example 1
# Import the autodiffcc package
>>> import autodiffcc as ad

# Find the foot of a function with two variables using the bisection method

>>> def f(x, y):
>>>    return x + y - 100
>>> interval  = [[1, 2], [3, 100]]
>>> my_root = ad.find_root(function=f, method='bisection', interval=interval)
>>> print(my_root)
[1.999999999999993, 98.0]
Example 2
# Import the autodiffcc package
>>> import autodiffcc as ad
    >>> interval = [[3, -3], [3, -3]]
    >>> my_root = ad.find_root(lambda x, y: (2 * x + y - 2, y + 2), interval=interval, method='newton-fourier', max_iter=150)
    >>> print(my_root)
    [ 2. -2.]
Example 3
# Import the autodiffcc package
>>> import autodiffcc as ad
    >>> def f1var(x):
    >>>     return (x + 2) * (x - 3)

    >>> my_root = ad.find_root(function=f1var, method='newton', start_values=1, threshold=1e-8)
    >>> print(my_root)
    3.
Expression parsing
Example 1

Another extension we offer is expression parsing. The below are two examples of parsing string expressions to function objects fn corresponding to the expressions.

>>> x = AD(2, der = [1, 0])
>>> y = AD(3, der = [0, 1])

# Use expressioncc to parse a normal expression
>>> fn = ad.expressioncc('x+y+1', ['x', 'y']).get_fn()
>>> print(fn(x,y).val)
6.0
>>> print(fn(x,y).der)
[1. 1.]

# Use expressioncc to parse an equation (left - right)
>>> fn = ad.expressioncc('x = -y-1', ['x', 'y']).get_fn()
>>> print(fn(x,y).val)
6.0
>>> print(fn(x,y).der)
[1. 1.]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

AutoDiffCC-1.0.1.tar.gz (23.9 kB view details)

Uploaded Source

Built Distribution

AutoDiffCC-1.0.1-py3-none-any.whl (29.1 kB view details)

Uploaded Python 3

File details

Details for the file AutoDiffCC-1.0.1.tar.gz.

File metadata

  • Download URL: AutoDiffCC-1.0.1.tar.gz
  • Upload date:
  • Size: 23.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.5

File hashes

Hashes for AutoDiffCC-1.0.1.tar.gz
Algorithm Hash digest
SHA256 4051b889c5bfa385365e5a95061733fe6b8b38d9425dd67a9e43befc57e8a717
MD5 d0548556edd1d4a26ee928d8d000e2f3
BLAKE2b-256 261e049e579a2516d22123deb286e957c9f0478d8ed2206e3b26859c265f3e5a

See more details on using hashes here.

File details

Details for the file AutoDiffCC-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: AutoDiffCC-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 29.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.5

File hashes

Hashes for AutoDiffCC-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5ced11762faca9f2e740cbfdbb8ea04c14310ca701ad71bf7b6d626cd0b47dfe
MD5 30f4d5d159fd379b35301daeb11cbb00
BLAKE2b-256 765016a5c936c235c01d43928436c90838ac95ce1174e97e4c42703704fa5143

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page