Skip to main content

An AutoDifferentiation Library

Project description

Build Status

codecov

Click here to see full documentation

Final Project - AutoDiffCC Python Package

CS207: Systems Development for Computational Science in Fall 2019

Group 22

  • Alex Spiride
  • Maja Garbulinska
  • Matthew Finney
  • Zhiying Xu

Overview

With the evolution of science and the growing computational possibilities, differentiation plays a critical role in a wide range of scientific and industrial applications of computer science. However, the precise computation of symbolic derivatives is computationally expensive, and not even possible in all situations, whereas the finite differencing method is not always accurate or stable. Automatic differentiation, however, provides a computationally efficient way to calculate derivatives, particularly of complex functions, for applications where accuracy and performance at scale are important.

Our package AutoDiffCC provides is an easy to use package that computes derivates of scalar and vector functions using the concept of automatic differentation.

We invite you to take a look at our repo and use AutoDiffCC!

Installation Guide

AutoDiffCC supports package installation via pip. Users can install the package in the command line with the following command.

pip install autodiffcc

How To Use

To use AutoDiffCC you first have to import it. If you already have it installed, you can do it by just running:

# Import the autodiffcc package
>>> import autodiffcc as ad 

Basic Applications

There are several ways in which you can take advantage of AutoDiffCC. Below we present some examples.

Example 1

A simple example using overloaded operators is described below. If you would like to evaluate f = x * x at x = 2, first initiate an AD object x with x = ad.AD(val=2.0, der=1.0), where 2 is the value and 1 is the derivative. Then simply define your function f = x * x and enjoy the results. You can see this example implemented below.

# Overload basic arithmetic operations
>>> x = ad.AD(val=2.0, der=1.0) 
>>> f = x * x
>>> print(f.val, f.der)
4.0 4.0

Alternatively, you can just proceed as follows:

>>> def f(x):
>>>   return x*x
>>> dfdx = differentiate(f)
>>> dfdx(x=2.0)
4.0 # this is the derivative value at x=2 
Example 2

To use more complex function like cos(x) follow this example using our built-in module ADmath:

>>> x = AD(val=3.0, der=1.0)
>>> ADmath.cos(x) 
(array(-0.9899924966004454), array(-0.1411200080598672))

Again, you can also do:

>>> def f(x):
>>>   return ADmath.cos(x) 
>>> dfdx = differentiate(f)
>>> dfdx( x=3.0)
-0.1411200080598672 # this is the derivative value evaluated at 3.0.

Offered Extentions

Root Finding

Our package offers three root finding methods. The bisection method, the newton-fourier method and the newton-raphson method.

Example 1
# Import the autodiffcc package
>>> import autodiffcc as ad

# Find the foot of a function with two variables using the bisection method

>>> def f(x, y):
>>>    return x + y - 100
>>> interval = [[1, 2], [3, 100]]
>>> my_root = ad.find_root(function=f, method='bisection', interval=interval)
>>> print(my_root)
[1.999999999999993, 98.0]
Example 2
# Import the autodiffcc package
>>> import autodiffcc as ad
    >>> interval = [[3, -3], [3, -3]]
    >>> my_root = ad.find_root(lambda x, y: (2 * x + y - 2, y + 2), interval=interval, method='newton-fourier', max_iter=150)
    >>> print(my_root)
    [ 2. -2.]
Example 3
# Import the autodiffcc package
>>> import autodiffcc as ad
    >>> def f1var(x):
    >>>     return (x + 2) * (x - 3)

    >>> my_root = ad.find_root(function=f1var, method='newton', start_values=1, threshold=1e-8)
    >>> print(my_root)
    3.
Expression parsing
Example 1

Another extension we offer is expression parsing. The below are two examples of parsing string expressions to function objects fn corresponding to the expressions.

# Import the autodiffcc package 
>>> import autodiffcc as ad
>>> from autodiffcc.parser import expressioncc

>>> x = ad.AD(2, der = [1, 0])
>>> y = ad.AD(3, der = [0, 1])

# Use expressioncc to parse a normal expression
>>> fn = expressioncc('x+y+1', ['x', 'y']).get_fn()
>>> print(fn(x,y).val)
6.0
>>> print(fn(x,y).der)
[1. 1.]

# Use expressioncc to parse an equation (left - right)
>>> fn = expressioncc('x = -y-1', ['x', 'y']).get_fn()
>>> print(fn(x,y).val)
6.0
>>> print(fn(x,y).der)
[1. 1.]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

AutoDiffCC-1.0.2.tar.gz (24.5 kB view details)

Uploaded Source

Built Distribution

AutoDiffCC-1.0.2-py3-none-any.whl (29.6 kB view details)

Uploaded Python 3

File details

Details for the file AutoDiffCC-1.0.2.tar.gz.

File metadata

  • Download URL: AutoDiffCC-1.0.2.tar.gz
  • Upload date:
  • Size: 24.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.5

File hashes

Hashes for AutoDiffCC-1.0.2.tar.gz
Algorithm Hash digest
SHA256 344ed14ba84bc50896bc20c2bfd8f560ac0a95168908eda0cb6b7cea2bcf993a
MD5 e3d8b0ddb824b00e2e4edbfed2e29703
BLAKE2b-256 1dfeca83aab0dff06f7aa979ec50578e8c86abb20ba960030d666f184825d388

See more details on using hashes here.

File details

Details for the file AutoDiffCC-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: AutoDiffCC-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 29.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.5

File hashes

Hashes for AutoDiffCC-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 8dcc244d1d45e31600fcb65b3dbe97f5706ee8e0e4d7c5ba15754815274cb98c
MD5 d476a80d85565b2aeb669a2fc5f02453
BLAKE2b-256 a6a7e90122e0b54ccdc3eaf8e24a37d53b7f5ec9b0756450383632ce76063925

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page