Skip to main content

Generates QPF frame time codes to be used with x264/x265

Project description

AutoQPF

Generates QPF frame time codes to be used with x264/x265

Install

pip install AutoQPF

Uninstall

pip uninstall AutoQPF

Example of how to use AutoQPF

from auto_qpf.qpf import QpfGenerator, ChapterIndexError, ImproperChapterError, NoChapterDataError

# basic ##########################
# media file (virtually any media file)
qpf = QpfGenerator().generate_qpf(file_input="PATH TO FILE.mkv")

# chapter file (ogm format)
qpf = QpfGenerator().generate_qpf(file_input="PATH TO FILE.txt")


# error handling ##################
try:
    qpf = QpfGenerator().generate_qpf(file_input="PATH TO FILE.mkv")

except ChapterIndexError:
    print("Issue getting the correct index from the chapters")

except ImproperChapterError:
    print("Input has improper or corrupted chapters")

except NoChapterDataError:
    print("Input has no chapter data")

AutoQPF.generate_qpf() parameters

file_input Required, path of the input file

file_output Optional, can specify an output path, if one isn't will automatically create one based on the input

write_to_disk Optional, True/False (default is True), if this is set to false the 'file_output' parameter will be ignored and a list of the converter chapter time codes will be returned

fps Optional, this should be defined when using '.txt' (ogm) format. If it's a media file + has a video track we will automatically detect the FPS. Default is '23.976'

auto_detect_fps Optional, True/False (default is True), this will over ride any user input if the file input is a media file

generate_chapters Optional, True/False (default is True), if enabled the program will automatically output write OGM chapters beside the QPF, correcting improper numbers parsed from source, creating numbered chapters if tagged, and extracting named directly while retaining the same time-codes that align with the QPF file.

Generating chapters to text is done with a helper class, if you want to access this helper class and use it directly you can access it below...

ChapterGenerator.generate_ogm_chapters() parameters

At the moment this requires a MediaInfo.parse() object, in the future I might change it to also accept a file input as well

media_info_obj A parsed pymediainfo object

output_path The output path of the OGM chapters file (suffix must be .txt)

chapter_chunks Optional, float (default is 12.0), this will make chapters for every 12% of the input file

extract_tagged Optional, bool (default is True), this will allow the extraction of detected tagged chapters

extract_named Optional, bool (default is True), this will allow the extraction of detected named chapters

extract_numbered Optional, bool (default is True), this will allow the extraction of detected numbered chapters

If any of extract_* is set to false, when that chapter type is detected the program will generate clean numbered chapters to replace it automatically.

Example of how to use ChapterGenerator

from auto_qpf.qpf import ChapterGenerator
from pymediainfo import MediaInfo

parse = MediaInfo.parse(r"file_input.mkv")

test = ChapterGenerator().generate_ogm_chapters(media_info_obj=parse, output_path="chapter.txt")

# returns path of chapter file
print(test)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

AutoQPF-0.2.4.tar.gz (8.1 kB view details)

Uploaded Source

File details

Details for the file AutoQPF-0.2.4.tar.gz.

File metadata

  • Download URL: AutoQPF-0.2.4.tar.gz
  • Upload date:
  • Size: 8.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for AutoQPF-0.2.4.tar.gz
Algorithm Hash digest
SHA256 c5b5b1040109ef82bbea225f6c515e95ed7868fb92d827f38dd12f29b8a3e24f
MD5 9739e98f2eaa062055f202c09230d663
BLAKE2b-256 84b983678dc0d665bc22fe33e15834c1a96db67fed821f24d19b093ba0e09725

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page