Skip to main content

Automatically Evaluate RAG pipelines with your own data. Find optimal structure for new RAG product.

Project description

AutoRAG

RAG AutoML tool for automatically finding an optimal RAG pipeline for your data.

Thumbnail

PyPI - Downloads LinkedIn X (formerly Twitter) Follow Hugging Face

Marker-Inc-Korea%2FAutoRAG | Trendshift

There are many RAG pipelines and modules out there, but you don’t know what pipeline is great for “your own data” and "your own use-case." Making and evaluating all RAG modules is very time-consuming and hard to do. But without it, you will never know which RAG pipeline is the best for your own use-case.

AutoRAG is a tool for finding the optimal RAG pipeline for “your data.” You can evaluate various RAG modules automatically with your own evaluation data and find the best RAG pipeline for your own use-case.

AutoRAG supports a simple way to evaluate many RAG module combinations. Try now and find the best RAG pipeline for your own use-case.

Explore our 📖 Document!!


YouTube Tutorial

https://github.com/Marker-Inc-Korea/AutoRAG/assets/96727832/c0d23896-40c0-479f-a17b-aa2ec3183a26

Muted by default, enable sound for voice-over

You can see on YouTube

Use AutoRAG in HuggingFace Space 🚀

Colab Tutorial

Index

Quick Install

We recommend using Python version 3.10 or higher for AutoRAG.

pip install AutoRAG

If you want to use the local models, you need to install gpu version.

pip install "AutoRAG[gpu]"

Or for parsing, you can use the parsing version.

pip install "AutoRAG[gpu,parse]"

Data Creation

Hugging Face Sticker

Image

image

RAG Optimization requires two types of data: QA dataset and Corpus dataset.

  1. QA dataset file (qa.parquet)
  2. Corpus dataset file (corpus.parquet)

QA dataset is important for accurate and reliable evaluation and optimization.

Corpus dataset is critical to the performance of RAGs. This is because RAG uses the corpus to retrieve documents and generate answers using it.

📌 Supporting Data Creation Modules

Image

Quick Start

1. Parsing

Set YAML File

modules:
  - module_type: langchain_parse
    parse_method: pdfminer

You can also use multiple Parse modules at once. However, in this case, you'll need to return a new process for each parsed result.

Start Parsing

You can parse your raw documents with just a few lines of code.

from autorag.parser import Parser

parser = Parser(data_path_glob="your/data/path/*")
parser.start_parsing("your/path/to/parse_config.yaml")

2. Chunking

Set YAML File

modules:
  - module_type: llama_index_chunk
    chunk_method: Token
    chunk_size: 1024
    chunk_overlap: 24
    add_file_name: en

You can also use multiple Chunk modules at once. In this case, you need to use one corpus to create QA and then map the rest of the corpus to QA Data. If the chunk method is different, the retrieval_gt will be different, so we need to remap it to the QA dataset.

Start Chunking

You can chunk your parsed results with just a few lines of code.

from autorag.chunker import Chunker

chunker = Chunker.from_parquet(parsed_data_path="your/parsed/data/path")
chunker.start_chunking("your/path/to/chunk_config.yaml")

3. QA Creation

You can create QA dataset with just a few lines of code.

import pandas as pd
from llama_index.llms.openai import OpenAI

from autorag.data.qa.filter.dontknow import dontknow_filter_rule_based
from autorag.data.qa.generation_gt.llama_index_gen_gt import (
	make_basic_gen_gt,
	make_concise_gen_gt,
)
from autorag.data.qa.schema import Raw, Corpus
from autorag.data.qa.query.llama_gen_query import factoid_query_gen
from autorag.data.qa.sample import random_single_hop

llm = OpenAI()
raw_df = pd.read_parquet("your/path/to/parsed.parquet")
raw_instance = Raw(raw_df)

corpus_df = pd.read_parquet("your/path/to/corpus.parquet")
corpus_instance = Corpus(corpus_df, raw_instance)

initial_qa = (
	corpus_instance.sample(random_single_hop, n=3)
	.map(
		lambda df: df.reset_index(drop=True),
	)
	.make_retrieval_gt_contents()
	.batch_apply(
		factoid_query_gen,  # query generation
		llm=llm,
	)
	.batch_apply(
		make_basic_gen_gt,  # answer generation (basic)
		llm=llm,
	)
	.batch_apply(
		make_concise_gen_gt,  # answer generation (concise)
		llm=llm,
	)
	.filter(
		dontknow_filter_rule_based,  # filter don't know
		lang="en",
	)
)

initial_qa.to_parquet('./qa.parquet', './corpus.parquet')

RAG Optimization

Hugging Face Sticker

Image

rag

How AutoRAG optimizes RAG pipeline?

Here is the AutoRAG RAG Structure that only show Nodes.

Image

Here is the image showing all the nodes and modules.

Image

rag_opt_gif

📌 Supporting RAG Optimization Nodes & modules

Metrics

The metrics used by each node in AutoRAG are shown below.

Image

Image

Here is the detailed information about the metrics that AutoRAG supports.

Quick Start

1. Set YAML File

First, you need to set the config YAML file for your RAG optimization.

We highly recommend using pre-made config YAML files for starter.

Here is an example of the config YAML file to use three retrieval nodes, prompt_maker, and generator nodes.

node_lines:
  - node_line_name: retrieve_node_line
    nodes:
      - node_type: lexical_retrieval
        strategy:
          metrics: [ retrieval_f1, retrieval_recall, retrieval_ndcg, retrieval_mrr ]
        top_k: 3
        modules:
          - module_type: bm25
      - node_type: semantic_retrieval
        strategy:
          metrics: [ retrieval_f1, retrieval_recall, retrieval_ndcg, retrieval_mrr ]
        top_k: 3
        modules:
          - module_type: vectordb
            vectordb: default
      - node_type: hybrid_retrieval
        strategy:
          metrics: [ retrieval_f1, retrieval_recall, retrieval_ndcg, retrieval_mrr ]
        top_k: 3
        modules:
          - module_type: hybrid_rrf
            weight_range: (4,80)
  - node_line_name: post_retrieve_node_line
    nodes:
      - node_type: prompt_maker  # Set Prompt Maker Node
        strategy:
          metrics: # Set Generation Metrics
            - metric_name: meteor
            - metric_name: rouge
            - metric_name: sem_score
              embedding_model: openai
        modules:
          - module_type: fstring
            prompt: "Read the passages and answer the given question. \n Question: {query} \n Passage: {retrieved_contents} \n Answer : "
      - node_type: generator  # Set Generator Node
        strategy:
          metrics: # Set Generation Metrics
            - metric_name: meteor
            - metric_name: rouge
            - metric_name: sem_score
              embedding_model: openai
        modules:
          - module_type: openai_llm
            llm: gpt-4o-mini
            batch: 16

2. Run AutoRAG

You can evaluate your RAG pipeline with just a few lines of code.

from autorag.evaluator import Evaluator

evaluator = Evaluator(qa_data_path='your/path/to/qa.parquet', corpus_data_path='your/path/to/corpus.parquet')
evaluator.start_trial('your/path/to/config.yaml')

or you can use the command line interface

autorag evaluate --config your/path/to/default_config.yaml --qa_data_path your/path/to/qa.parquet --corpus_data_path your/path/to/corpus.parquet

Once it is done, you can see several files and folders created in your current directory. At the trial folder named to numbers (like 0), you can check summary.csv file that summarizes the evaluation results and the best RAG pipeline for your data.

For more details, you can check out how the folder structure looks like at here.

3. Run Dashboard

You can run a dashboard to easily see the result.

autorag dashboard --trial_dir /your/path/to/trial_dir

sample dashboard

dashboard

4. Deploy your optimal RAG pipeline

4-1. Run as a Code

You can use an optimal RAG pipeline right away from the trial folder. The trial folder is the directory used in the running dashboard. (like 0, 1, 2, ...)

from autorag.deploy import Runner

runner = Runner.from_trial_folder('/your/path/to/trial_dir')
runner.run('your question')

4-2. Run as an API server

You can run this pipeline as an API server.

Check out the API endpoint at here.

import nest_asyncio
from autorag.deploy import ApiRunner

nest_asyncio.apply()

runner = ApiRunner.from_trial_folder('/your/path/to/trial_dir')
runner.run_api_server()
autorag run_api --trial_dir your/path/to/trial_dir --host 0.0.0.0 --port 8000

The cli command uses extracted config YAML file. If you want to know it more, check out here.

4-3. Run as a Web Interface

you can run this pipeline as a web interface.

Check out the web interface at here.

autorag run_web --trial_path your/path/to/trial_path

sample web interface

web_interface

☎️ FaQ

💻 Hardware Specs

Running AutoRAG

🍯 Tips/Tricks

☎️ TroubleShooting

Thanks for shoutout

Company

llama index

Individual


✨ Contributors ✨

Thanks go to these wonderful people:

Contribution

We are developing AutoRAG as open-source.

So this project welcomes contributions and suggestions. Feel free to contribute to this project.

Plus, check out our detailed documentation at here.

Citation

@misc{kim2024autoragautomatedframeworkoptimization,
      title={AutoRAG: Automated Framework for optimization of Retrieval Augmented Generation Pipeline},
      author={Dongkyu Kim and Byoungwook Kim and Donggeon Han and Matouš Eibich},
      year={2024},
      eprint={2410.20878},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2410.20878},
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autorag-0.3.21.tar.gz (10.3 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

autorag-0.3.21-py3-none-any.whl (256.2 kB view details)

Uploaded Python 3

File details

Details for the file autorag-0.3.21.tar.gz.

File metadata

  • Download URL: autorag-0.3.21.tar.gz
  • Upload date:
  • Size: 10.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.9.9 {"installer":{"name":"uv","version":"0.9.9"},"python":null,"implementation":{"name":null,"version":null},"distro":{"name":"Ubuntu","version":"24.04","id":"noble","libc":null},"system":{"name":null,"release":null},"cpu":null,"openssl_version":null,"setuptools_version":null,"rustc_version":null,"ci":true}

File hashes

Hashes for autorag-0.3.21.tar.gz
Algorithm Hash digest
SHA256 9cfcadd6ceb3166860e84f690d465062ad8572afd66d20b7cfad6abc63ce1f87
MD5 f3956d0ea322bd3cc6754f3d0af85c1b
BLAKE2b-256 e85437629c9750adfd4e95541af8200fe998dbf77d53843137e12f3808805d09

See more details on using hashes here.

File details

Details for the file autorag-0.3.21-py3-none-any.whl.

File metadata

  • Download URL: autorag-0.3.21-py3-none-any.whl
  • Upload date:
  • Size: 256.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.9.9 {"installer":{"name":"uv","version":"0.9.9"},"python":null,"implementation":{"name":null,"version":null},"distro":{"name":"Ubuntu","version":"24.04","id":"noble","libc":null},"system":{"name":null,"release":null},"cpu":null,"openssl_version":null,"setuptools_version":null,"rustc_version":null,"ci":true}

File hashes

Hashes for autorag-0.3.21-py3-none-any.whl
Algorithm Hash digest
SHA256 0184f272b8e8bbc8606f1c9710b50d0973f5708b2acbd805836ce6166b34a3c7
MD5 f86983dec63dd164fadf611f6064f322
BLAKE2b-256 6761a105a33411553457e7f9dcf37fd2f94ee002d643db8d57e70aa48d4a26b7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page