Simple library to write decision trees
Project description
This is a simple library to implement Binary decision Trees.
In computer science, a binary decision diagram (BDD) or branching program is a data structure that is used to represent a Boolean function. On a more abstract level, BDDs can be considered as a compressed representation of sets or relations. Unlike other compressed representations, operations are performed directly on the compressed representation, i.e. without decompression.
A simple example of this would be the following tree:
Each node has a pair of childs, one child is the one associated to its father when the function inside the father returns a true value, and the other is associated when the fathers function returns false.
Use
You can create the nodes manually as python objects like is shown in this example:
from bdt.tree import BDT
from bdt.node import Node
true_node = Node(
'True Node'
)
false_node = Node(
'False Node'
)
head_node = Node(
'Head Node',
lambda var: var < 10,
true_child=true_node,
false_child=false_node
)
tree = BDT(
head_node
)
Other option is to create the tree by passing a python dictionary:
from bdt.tools import tree_from_dict
tree_dict = {
'head': 'Head Node',
'variables': [
'withd',
'height'
],
'nodes': [
{
'name': 'Head Node',
'function': 'withd * height < 50',
'true_child': 'True Node',
'false_child': 'False Node'
},
{
'name': 'True Node',
'function': 'withd * height < 25',
'true_child': 'True True Node',
'false_child': 'True False Node'
},
{
'name': 'False Node',
'function': 'withd * height < 100',
'true_child': 'False True Node',
'false_child': 'False False Node'
},
{
'name': 'True True Node',
'function': 'None',
'true_child': 'None',
'false_child': 'None'
},
{
'name': 'True False Node',
'function': 'None',
'true_child': 'None',
'false_child': 'None',
},
{
'name': 'False True Node',
'function': 'None',
'true_child': 'None',
'false_child': 'None'
},
{
'name': 'False False Node',
'function': 'None',
'true_child': 'None',
'false_child': 'None'
},
]
}
tree = tree_from_dict(tree_dict)
And the final form would be to load it from a JSON file the matches the previous dictionary and load it by using:
import json
from bdt.tools import tree_from_json
json_data = open('{PATH_TO_FILE/file.json}', 'r')
tree = tree_from_json(json_data)
And the final form would be to load it from a JSON file the matches the previous dictionary and load it by using:
import json
from bdt.tools import tree_from_json
json_data = open('{PATH_TO_FILE/file.json}', 'r')
tree = tree_from_json(json_data)
To traverse the created tree yo can makeit like this:
import json
from bdt.tools import tree_from_json
json_data = open('{PATH_TO_FILE/file.json}', 'r')
tree = tree_from_json(json_data)
tree.set_parameters({
'withd': 25,
'height': 25
})
for node in tree:
print node.name
The set_parameters function let you initialize the values needed to run the boolean functions inside each node.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file BDT-0.0.3.tar.gz
.
File metadata
- Download URL: BDT-0.0.3.tar.gz
- Upload date:
- Size: 4.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cf0df7a54d849a09cb206fd524996055d666808598c2e788bb97b2146f07af6e |
|
MD5 | 68e2b5d3fe3f09a53a6ecdad277b8464 |
|
BLAKE2b-256 | a8fcb02e5964ed69277ff17895e3aa7c557bffafc915f7e75416fd35b76b6225 |