Skip to main content

Bayesian Optimization Hyperband Hyperparameter Optimization

Project description

Bayesian Optimization Hyperband Hyperparameter Optimization

Implementation for BOHB

Requirements

- numpy
- scipy
- statsmodels
- dask
- torch (example)

Installation

pip3 install bohb-hpo

Usage

from bohb import BOHB
import bohb.configspace as cs


def objective(step, alpha, beta):
    return 1 / (alpha * step + 0.1) + beta


def evaluate(params, n_iterations):
    loss = 0.0
    for i in range(int(n_iterations)):
        loss += objective(**params, step=i)
    return loss/n_iterations


if __name__ == '__main__':
    alpha = cs.CategoricalHyperparameter('alpha', [0.001, 0.01, 0.1])
    beta = cs.CategoricalHyperparameter('beta', [1, 2, 3])
    configspace = cs.ConfigurationSpace([alpha, beta])

    opt = BOHB(configspace, evaluate, max_budget=10, min_budget=1)

    # Parallel
    # opt = BOHB(configspace, evaluate, max_budget=10, min_budget=1, n_proc=4)

    logs = opt.optimize()

See examples

Configspace Examples

  • Basic
import dehb.configspace as cs
lr = cs.UniformHyperparameter('lr', 1e-4, 1e-1, log=True)
batch_size = cs.CategoricalHyperparameter('batch_size', [8, 16, 32])
configspace = cs.ConfigurationSpace([lr, batch_size], seed=123)
  • Conditional Parameters
import bohb.configspace as cs
a = cs.IntegerUniformHyperparameter('a', 0, 4)
b = cs.CategoricalHyperparameter('b', ['a', 'b', 'c'], a == 0)
b_default = cs.CategoricalHyperparameter('b', ['d'], ~b.cond)
configspace = cs.ConfigurationSpace([a, b, b_default], seed=123)
  • Complex Conditional Parameters
import bohb.configspace as cs
a = cs.IntegerUniformHyperparameter('a', 0, 4)
b1 = cs.UniformHyperparameter('b', 0, 0.5, a <= 1)
b2 = cs.UniformHyperparameter('b', 0.5, 1, ~b1.cond)
c1 = cs.CategoricalHyperparameter('c', ['a', 'b', 'c'], b1 < 0.25)
c2 = cs.CategoricalHyperparameter('c', ['c', 'd', 'e'], ~c1.cond)
d1 = cs.UniformHyperparameter('d', 0, 1, (b1 < 0.125) & (c1 == 'b'))
d2 = cs.NormalHyperparameter('d', 0, 0.1, (b1 > 0.125) & (c1 == 'c'))
d3 = cs.IntegerNormalHyperparameter('d', 5, 10, (b2 > 0.750) & (c2 == 'd'))
d4 = cs.UniformHyperparameter('d', 0, 0, ~(d1.cond | d2.cond | d3.cond))
configspace = cs.ConfigurationSpace([a, b1, b2, c1, c2, d1, d2, d3, d4], seed=123)

License

bohb-hpo is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

BOHB_HPO-0.5.2.tar.gz (6.0 kB view details)

Uploaded Source

File details

Details for the file BOHB_HPO-0.5.2.tar.gz.

File metadata

  • Download URL: BOHB_HPO-0.5.2.tar.gz
  • Upload date:
  • Size: 6.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for BOHB_HPO-0.5.2.tar.gz
Algorithm Hash digest
SHA256 facf15bc193e67f43260c9e48a612fa1c70ef0b8911377e31a946912e25a14c8
MD5 90aba4aa4197549d47b875fecef5d63e
BLAKE2b-256 76111c093976ff45711e0f9060fb6ea0d02629522715f7d17463b397a6ae62c5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page