Skip to main content

Bayesian Optimization Hyperband Hyperparameter Optimization

Project description

Bayesian Optimization Hyperband Hyperparameter Optimization

Implementation for BOHB

Requirements

- numpy
- scipy
- statsmodels
- dask
- torch (example)

Installation

pip3 install bohb-hpo

Usage

from bohb import BOHB
import bohb.configspace as cs


def objective(step, alpha, beta):
    return 1 / (alpha * step + 0.1) + beta


def evaluate(params, n_iterations):
    loss = 0.0
    for i in range(int(n_iterations)):
        loss += objective(**params, step=i)
    return loss/n_iterations


if __name__ == '__main__':
    alpha = cs.CategoricalHyperparameter('alpha', [0.001, 0.01, 0.1])
    beta = cs.CategoricalHyperparameter('beta', [1, 2, 3])
    configspace = cs.ConfigurationSpace([alpha, beta])

    opt = BOHB(configspace, evaluate, max_budget=10, min_budget=1)

    # Parallel
    # opt = BOHB(configspace, evaluate, max_budget=10, min_budget=1, n_proc=4)

    logs = opt.optimize()

See examples

Configspace Examples

  • Basic
import dehb.configspace as cs
lr = cs.UniformHyperparameter('lr', 1e-4, 1e-1, log=True)
batch_size = cs.CategoricalHyperparameter('batch_size', [8, 16, 32])
configspace = cs.ConfigurationSpace([lr, batch_size], seed=123)
  • Conditional Parameters
import bohb.configspace as cs
a = cs.IntegerUniformHyperparameter('a', 0, 4)
b = cs.CategoricalHyperparameter('b', ['a', 'b', 'c'], a == 0)
b_default = cs.CategoricalHyperparameter('b', ['d'], ~b.cond)
configspace = cs.ConfigurationSpace([a, b, b_default], seed=123)
  • Complex Conditional Parameters
import bohb.configspace as cs
a = cs.IntegerUniformHyperparameter('a', 0, 4)
b1 = cs.UniformHyperparameter('b', 0, 0.5, a <= 1)
b2 = cs.UniformHyperparameter('b', 0.5, 1, ~b1.cond)
c1 = cs.CategoricalHyperparameter('c', ['a', 'b', 'c'], b1 < 0.25)
c2 = cs.CategoricalHyperparameter('c', ['c', 'd', 'e'], ~c1.cond)
d1 = cs.UniformHyperparameter('d', 0, 1, (b1 < 0.125) & (c1 == 'b'))
d2 = cs.NormalHyperparameter('d', 0, 0.1, (b1 > 0.125) & (c1 == 'c'))
d3 = cs.IntegerNormalHyperparameter('d', 5, 10, (b2 > 0.750) & (c2 == 'd'))
d4 = cs.UniformHyperparameter('d', 0, 0, ~(d1.cond | d2.cond | d3.cond))
configspace = cs.ConfigurationSpace([a, b1, b2, c1, c2, d1, d2, d3, d4], seed=123)

License

bohb-hpo is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

BOHB_HPO-0.5.2.tar.gz (6.0 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page