Building Recognition using AI at Large-Scale
Project description
Building Recognition using AI at Large-Scale.
What is BRAILS
BRAILS is the acronym for Building Recognition using AI at Large-Scale, which is an AI-Based pipeline for city-scale building information modeling (BIM).
How to install
pip install BRAILS
How to use
The following example can be found in this Google Colab Notebook.
Example images can be downloaded like this.
wget https://zenodo.org/record/4095668/files/image_examples.zip
# import modules
from brails.RoofTypeClassifier import RoofClassifier
from brails.OccupancyClassClassifier import OccupancyClassifier
from brails.SoftstoryClassifier import SoftstoryClassifier
# initialize a roof classifier
roofModel = RoofClassifier()
# initialize an occupancy classifier
occupancyModel = OccupancyClassifier()
# initialize a soft-story classifier
ssModel = SoftstoryClassifier()
# use the roof classifier
imgs = ['image_examples/Roof/gabled/76.png',
'image_examples/Roof/hipped/54.png',
'image_examples/Roof/flat/94.png']
predictions = roofModel.predict(imgs)
# use the occupancy classifier
imgs = ['image_examples/Occupancy/RES1/51563.png',
'image_examples/Occupancy/RES3/65883.png']
predictions = occupancyModel.predict(imgs)
# use the softstory classifier
imgs = ['image_examples/Softstory/Others/3110.jpg',
'image_examples/Softstory/Softstory/901.jpg']
predictions = ssModel.predict(imgs)
The predictions look like this:
Image : image_examples/Roof/gabled/76.png Class : gabled (83.21%)
Image : image_examples/Roof/hipped/54.png Class : hipped (100.0%)
Image : image_examples/Roof/flat/94.png Class : flat (97.68%)
Results written in file roofType_preds.csv
Image : image_examples/Occupancy/RES1/51563.png Class : RES1 (99.99%)
Image : image_examples/Occupancy/RES3/65883.png Class : RES3 (98.67%)
Results written in file occupancy_preds.csv
Image : image_examples/Softstory/Others/3110.jpg Class : others (96.13%)
Image : image_examples/Softstory/Softstory/901.jpg Class : softstory (96.31%)
Results written in file softstory_preds.csv
Documents
Read the document here.
More details in paper: here.
How to cite
Charles Wang, Qian Yu, Frank McKenna, Barbaros Cetiner, Stella X. Yu, Ertugrul Taciroglu & Kincho H. Law. (2019, October 11). NHERI-SimCenter/BRAILS: v1.0.1 (Version v1.0.1). Zenodo. http://doi.org/10.5281/zenodo.3483208
Acknowledgement
This material is based upon work supported by the National Science Foundation under Grant No. 1612843.
Contact
Charles Wang, NHERI SimCenter, UC Berkeley, c_w@berkeley.edu
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.