Skip to main content

Building Recognition using AI at Large-Scale

Project description

logo Building Recognition using AI at Large-Scale.

BRAILS

What is BRAILS

BRAILS is the acronym for Building Recognition using AI at Large-Scale, which is an AI-Based pipeline for city-scale building information modeling (BIM).

How to install

pip install BRAILS

How to use

Example 1

The following example can be found in this Google Colab Notebook.

# Import the module from BRAILS
from brails.CityBuilder import CityBuilder

# Initialize the CityBuilder
cityBuilder = CityBuilder(attributes=['story','occupancy','roofshape'], 
                   numBldg=10,random=False, place='lake charles',state='la', 
                   GoogleMapAPIKey='put-your-key-here')

# create the city-scale BIM file
BIM = cityBuilder.build()

The definitions of the parameters in this example can be found here.

The result BIM is a geopandas dataframe:

index geometry	                                       ID	roofShape	roofShapeProb	softStory	softStoryProb	occupancy	occupancyProb
0	POLYGON ((-93.18634 30.26957, -93.18626 30.269...	0	gabled	       0.985102	    softstory	0.985102	    RES1	    0.996449
1	POLYGON ((-93.18812 30.25996, -93.18812 30.260...	1	gabled	       0.903468	    others      0.903468	    RES1	    0.999988
2	POLYGON ((-93.18746 30.26043, -93.18746 30.260...	2	hipped	       0.790183	    others      0.790183	    RES1	    1.000000
3	POLYGON ((-93.18283 30.26018, -93.18294 30.260...	3	flat	       0.414026	    softstory	0.414026	    RES1	    0.999875
4	POLYGON ((-93.18224 30.26446, -93.18240 30.264...	4	flat	       0.956571	    softstory	0.956571	    RES1	    0.999984
5	POLYGON ((-93.17564 30.26633, -93.17564 30.266...	5	flat	       0.982985	    others      0.982985	    RES1	    0.999994
6	POLYGON ((-93.21555 30.23522, -93.21555 30.235...	6	flat	       0.992871	    softstory	0.992871	    RES3	    0.971049
7	POLYGON ((-93.21243 30.22394, -93.21243 30.224...	7	flat	       0.490653	    softstory	0.490653	    RES1	    0.894999
8	POLYGON ((-93.21002 30.22489, -93.21002 30.224...	8	hipped	       0.769291	    others      0.769291	    RES1	    0.904881
9	POLYGON ((-93.21001 30.22770, -93.20999 30.227...	9	flat	       0.991286	    others      0.991286	    RES1	    0.688759

Example 2

The following example can be found in this Google Colab Notebook.

Example images can be downloaded like this.

wget https://zenodo.org/record/4095668/files/image_examples.zip
# import modules
from brails.RoofTypeClassifier import RoofClassifier
from brails.OccupancyClassClassifier import OccupancyClassifier
from brails.SoftstoryClassifier import SoftstoryClassifier

# initialize a roof classifier
roofModel = RoofClassifier()

# initialize an occupancy classifier
occupancyModel = OccupancyClassifier()

# initialize a soft-story classifier
ssModel = SoftstoryClassifier()

# use the roof classifier 

imgs = ['image_examples/Roof/gabled/76.png',
        'image_examples/Roof/hipped/54.png',
        'image_examples/Roof/flat/94.png']

predictions = roofModel.predict(imgs)

# use the occupancy classifier 

imgs = ['image_examples/Occupancy/RES1/51563.png',
        'image_examples/Occupancy/RES3/65883.png']

predictions = occupancyModel.predict(imgs)

# use the softstory classifier 

imgs = ['image_examples/Softstory/Others/3110.jpg',
        'image_examples/Softstory/Softstory/901.jpg']

predictions = ssModel.predict(imgs)

The predictions look like this:

Image :  image_examples/Roof/gabled/76.png     Class : gabled (83.21%)
Image :  image_examples/Roof/hipped/54.png     Class : hipped (100.0%)
Image :  image_examples/Roof/flat/94.png     Class : flat (97.68%)
Results written in file roofType_preds.csv

Image :  image_examples/Occupancy/RES1/51563.png     Class : RES1 (99.99%)
Image :  image_examples/Occupancy/RES3/65883.png     Class : RES3 (98.67%)
Results written in file occupancy_preds.csv

Image :  image_examples/Softstory/Others/3110.jpg     Class : others (96.13%)
Image :  image_examples/Softstory/Softstory/901.jpg     Class : softstory (96.31%)
Results written in file softstory_preds.csv

Documents

Read the document here.

More details in paper: here.

How to cite

Charles Wang, Qian Yu, Frank McKenna, Barbaros Cetiner, Stella X. Yu, Ertugrul Taciroglu & Kincho H. Law. (2019, October 11). NHERI-SimCenter/BRAILS: v1.0.1 (Version v1.0.1). Zenodo. http://doi.org/10.5281/zenodo.3483208

Acknowledgement

This material is based upon work supported by the National Science Foundation under Grant No. 1612843.

Contact

Charles Wang, NHERI SimCenter, UC Berkeley, c_w@berkeley.edu

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

BRAILS-1.9.4.tar.gz (16.4 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page