Building Recognition using AI at Large-Scale
Project description
Building Recognition using AI at Large-Scale.
What is BRAILS
BRAILS is the acronym for Building Recognition using AI at Large-Scale, which is an AI-Based pipeline for city-scale building information modeling (BIM).
How to install
pip install BRAILS
How to use
Example 1
The following example can be found in this Google Colab Notebook.
# Import the module from BRAILS
from brails.CityBuilder import CityBuilder
# Initialize the CityBuilder
cityBuilder = CityBuilder(attributes=['story','occupancy','roofshape'],
numBldg=10,random=False, place='lake charles',state='la',
GoogleMapAPIKey='put-your-key-here')
# create the city-scale BIM file
BIM = cityBuilder.build()
The definitions of the parameters in this example can be found here.
The result BIM is a geopandas dataframe:
index geometry ID roofShape roofShapeProb softStory softStoryProb occupancy occupancyProb
0 POLYGON ((-93.18634 30.26957, -93.18626 30.269... 0 gabled 0.985102 softstory 0.985102 RES1 0.996449
1 POLYGON ((-93.18812 30.25996, -93.18812 30.260... 1 gabled 0.903468 others 0.903468 RES1 0.999988
2 POLYGON ((-93.18746 30.26043, -93.18746 30.260... 2 hipped 0.790183 others 0.790183 RES1 1.000000
3 POLYGON ((-93.18283 30.26018, -93.18294 30.260... 3 flat 0.414026 softstory 0.414026 RES1 0.999875
4 POLYGON ((-93.18224 30.26446, -93.18240 30.264... 4 flat 0.956571 softstory 0.956571 RES1 0.999984
5 POLYGON ((-93.17564 30.26633, -93.17564 30.266... 5 flat 0.982985 others 0.982985 RES1 0.999994
6 POLYGON ((-93.21555 30.23522, -93.21555 30.235... 6 flat 0.992871 softstory 0.992871 RES3 0.971049
7 POLYGON ((-93.21243 30.22394, -93.21243 30.224... 7 flat 0.490653 softstory 0.490653 RES1 0.894999
8 POLYGON ((-93.21002 30.22489, -93.21002 30.224... 8 hipped 0.769291 others 0.769291 RES1 0.904881
9 POLYGON ((-93.21001 30.22770, -93.20999 30.227... 9 flat 0.991286 others 0.991286 RES1 0.688759
Example 2
The following example can be found in this Google Colab Notebook.
Example images can be downloaded like this.
wget https://zenodo.org/record/4095668/files/image_examples.zip
# import modules
from brails.RoofTypeClassifier import RoofClassifier
from brails.OccupancyClassClassifier import OccupancyClassifier
from brails.SoftstoryClassifier import SoftstoryClassifier
# initialize a roof classifier
roofModel = RoofClassifier()
# initialize an occupancy classifier
occupancyModel = OccupancyClassifier()
# initialize a soft-story classifier
ssModel = SoftstoryClassifier()
# use the roof classifier
imgs = ['image_examples/Roof/gabled/76.png',
'image_examples/Roof/hipped/54.png',
'image_examples/Roof/flat/94.png']
predictions = roofModel.predict(imgs)
# use the occupancy classifier
imgs = ['image_examples/Occupancy/RES1/51563.png',
'image_examples/Occupancy/RES3/65883.png']
predictions = occupancyModel.predict(imgs)
# use the softstory classifier
imgs = ['image_examples/Softstory/Others/3110.jpg',
'image_examples/Softstory/Softstory/901.jpg']
predictions = ssModel.predict(imgs)
The predictions look like this:
Image : image_examples/Roof/gabled/76.png Class : gabled (83.21%)
Image : image_examples/Roof/hipped/54.png Class : hipped (100.0%)
Image : image_examples/Roof/flat/94.png Class : flat (97.68%)
Results written in file roofType_preds.csv
Image : image_examples/Occupancy/RES1/51563.png Class : RES1 (99.99%)
Image : image_examples/Occupancy/RES3/65883.png Class : RES3 (98.67%)
Results written in file occupancy_preds.csv
Image : image_examples/Softstory/Others/3110.jpg Class : others (96.13%)
Image : image_examples/Softstory/Softstory/901.jpg Class : softstory (96.31%)
Results written in file softstory_preds.csv
Documents
Read the document here.
More details in paper: here.
How to cite
Charles Wang, Qian Yu, Frank McKenna, Barbaros Cetiner, Stella X. Yu, Ertugrul Taciroglu & Kincho H. Law. (2019, October 11). NHERI-SimCenter/BRAILS: v1.0.1 (Version v1.0.1). Zenodo. http://doi.org/10.5281/zenodo.3483208
Acknowledgement
This material is based upon work supported by the National Science Foundation under Grant No. 1612843.
Contact
Charles Wang, NHERI SimCenter, UC Berkeley, c_w@berkeley.edu
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.