Skip to main content

Babit Multimedia Framework

Project description

BMF - Cross-platform, multi-language, customizable video processing framework with strong GPU acceleration

BMF (Babit Multimedia Framework) is a cross-platform, multi-language, customizable multimedia processing framework developed by ByteDance. With over 4 years of testing and improvements, BMF has been tailored to adeptly tackle challenges in our real-world production environments. It is currently widely used in ByteDance's video streaming, live transcoding, cloud editing and mobile pre/post processing scenarios. More than 2 billion videos are processed by the framework every day.

Here are some key features of BMF:

  • Cross-Platform Support: Native compatibility with Linux, Windows, and Mac OS, as well as optimization for both x86 and ARM CPUs.

  • Easy to use: BMF provides Python, Go, and C++ APIs, allowing developers the flexibility to code in their favourite languages.

  • Customizability: Developers can enhance the framework's features by adding their own modules independently because of BMF decoupled architecture.

  • High performance: BMF has a powerful scheduler and strong support for heterogeneous acceleration hardware. Moreover, NVIDIA has been cooperating with us to develop a highly optimized GPU pipeline for video transcoding and AI inference.

  • Efficient data conversion: BMF offers seamless data format conversions across popular frameworks (FFmpeg/Numpy/PyTorch/OpenCV/TensorRT), conversion between hardware devices (CPU/GPU), and color space and pixel format conversion.

Dive deeper into BMF's capabilities on our website for more details.

Quick Experience

In this section, we will directly showcase the capabilities of the BMF framework around five dimensions: Transcode, Edit, Meeting/Broadcaster, GPU acceleration, and AI Inference. For all the demos provided below, corresponding implementations and documentation are available on Google Colab, allowing you to experience them intuitively.

Transcode

This demo describes step-by-step how to use BMF to develop a transcoding program, including video transcoding, audio transcoding, and image transcoding. In it, you can familiarize yourself with how to use BMF and how to use FFmpeg-compatible options to achieve the capabilities you need.

If you want to have a quick experiment, you can try it on Open In Colab

Edit

The Edit Demo will show you how to implement a high-complexity audio and video editing pipeline through the BMF framework. We have implemented two Python modules, video_concat and video_overlay, and combined various atomic capabilities to construct a complex BMF Graph.

If you want to have a quick experiment, you can try it on Open In Colab

Meeting/Broadcaster

This demo uses BMF framework to construct a simple broadcast service. The service provides an API that enables dynamic video source pulling, video layout control, audio mixing, and ultimately streaming the output to an RTMP server. This demo showcases the modularity of BMF, multi-language development, and the ability to dynamically adjust the pipeline.

Below is a screen recording demonstrating the operation of broadcaster:

GPU acceleration

GPU Video Frame Extraction

The video frame extraction acceleration demo shows:

  1. BMF flexible capability of:

    • Multi-language programming, we can see multi-language modules work together in the demo
    • Ability to extend easily, there are new C++, Python modules added simply
    • FFmpeg ability is fully compatible
  2. Hardware acceleration quickly enablement and CPU/GPU pipeline support

    • Heterogeneous pipeline is supported in BMF, such as process between CPU and GPU
    • Useful hardware color space conversion in BMF

If you want to have a quick experiment, you can try it on Open In Colab

GPU Video Transcoding and Filtering

The GPU transcoding and filter module demo shows:

  1. Common video/image filters in BMF accelerated by GPU
  2. How to write GPU modules in BMF

The demo builds a transcoding pipeline which fully runs on GPU:

decode->scale->flip->rotate->crop->blur->encode

If you want to have a quick experiment, you can try it on Open In Colab

AI inference

Deoldify

This demo shows how to integrate the state of art AI algorithms into the BMF video processing pipeline. The famous open source colorization algorithm DeOldify is wrapped as a BMF pyhton module in less than 100 lines of codes. The final effect is illustrated below, with the original video on the left side and the colored video on the right.

If you want to have a quick experiment, you can try it on Open In Colab

Super Resolution

This demo implements the super-resolution inference process of Real-ESRGAN as a BMF module, showcasing a BMF pipeline that combines decoding, super-resolution inference and encoding.

If you want to have a quick experiment, you can try it on Open In Colab

Video Quality Score

This demo shows how to invoke our aesthetic assessment model using bmf. Our deep learning model Aesmode has achieved a binary classification accuracy of 83.8% on AVA dataset, reaching the level of academic SOTA, and can be directly used to evaluate the aesthetic degree of videos by means of frame extraction processing.

If you want to have a quick experiment, you can try it on Open In Colab

Face Detect With TensorRT

This Demo shows a full-link face detect pipeline based on TensorRT acceleration, which internally uses the TensorRT-accelerated Onnx model to process the input video. It uses the NMS algorithm to filter repeated candidate boxes to form an output, which can be used to process a Face Detection Task efficiently.

If you want to have a quick experiment, you can try it on Open In Colab

Table of Contents

License

The project has an Apache 2.0 License. Third party components and dependencies remain under their own licenses.

Contributing

Contributions are welcomed. Please follow the guidelines.

We use GitHub issues to track and resolve problems. If you have any questions, please feel free to join the discussion and work with us to find a solution.

Acknowledgment

The decoder, encoder and filter reference ffmpeg cmdline tool. They are wrapped as BMF's built-in modules under the LGPL license.

The project also draws inspiration from other popular frameworks, such as ffmpeg-python and mediapipe. Our website is using the project from docsy based on hugo.

Here, we'd like to express our sincerest thanks to the developers of the above projects!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

BabitMF-0.0.11-cp310-cp310-manylinux_2_28_x86_64.whl (9.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

BabitMF-0.0.11-cp310-cp310-manylinux_2_28_s390x.whl (8.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ s390x

BabitMF-0.0.11-cp310-cp310-manylinux_2_28_ppc64le.whl (9.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ppc64le

BabitMF-0.0.11-cp310-cp310-manylinux_2_28_aarch64.whl (8.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

BabitMF-0.0.11-cp310-cp310-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

BabitMF-0.0.11-cp310-cp310-macosx_10_15_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

BabitMF-0.0.11-cp310-cp310-macosx_10_15_universal2.whl (6.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ universal2 (ARM64, x86-64)

BabitMF-0.0.11-cp39-cp39-manylinux_2_28_x86_64.whl (9.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

BabitMF-0.0.11-cp39-cp39-manylinux_2_28_s390x.whl (8.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ s390x

BabitMF-0.0.11-cp39-cp39-manylinux_2_28_ppc64le.whl (9.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ppc64le

BabitMF-0.0.11-cp39-cp39-manylinux_2_28_aarch64.whl (8.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

BabitMF-0.0.11-cp39-cp39-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

BabitMF-0.0.11-cp39-cp39-macosx_10_15_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

BabitMF-0.0.11-cp39-cp39-macosx_10_15_universal2.whl (6.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ universal2 (ARM64, x86-64)

BabitMF-0.0.11-cp38-cp38-manylinux_2_28_x86_64.whl (9.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

BabitMF-0.0.11-cp38-cp38-manylinux_2_28_s390x.whl (8.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ s390x

BabitMF-0.0.11-cp38-cp38-manylinux_2_28_ppc64le.whl (9.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ppc64le

BabitMF-0.0.11-cp38-cp38-manylinux_2_28_aarch64.whl (8.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

BabitMF-0.0.11-cp38-cp38-macosx_10_15_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

BabitMF-0.0.11-cp37-cp37m-manylinux_2_28_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

BabitMF-0.0.11-cp37-cp37m-manylinux_2_28_s390x.whl (8.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ s390x

BabitMF-0.0.11-cp37-cp37m-manylinux_2_28_ppc64le.whl (9.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ ppc64le

BabitMF-0.0.11-cp37-cp37m-manylinux_2_28_aarch64.whl (8.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ ARM64

BabitMF-0.0.11-cp37-cp37m-macosx_10_15_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

BabitMF-0.0.11-cp36-cp36m-manylinux_2_28_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.28+ x86-64

BabitMF-0.0.11-cp36-cp36m-manylinux_2_28_s390x.whl (8.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.28+ s390x

BabitMF-0.0.11-cp36-cp36m-manylinux_2_28_ppc64le.whl (9.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.28+ ppc64le

BabitMF-0.0.11-cp36-cp36m-manylinux_2_28_aarch64.whl (8.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.28+ ARM64

BabitMF-0.0.11-cp36-cp36m-macosx_10_15_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.6m macOS 10.15+ x86-64

File details

Details for the file BabitMF-0.0.11-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f58616e17c7e74ef97c4e1bab78f95e36866e9b7982be25de6b29c2be0ba3df7
MD5 05d6953aa2660cf3d4296a9bf70f29da
BLAKE2b-256 d7c4d70732ae0de0c11378b188898f9d7d2d7b7e50eb52eb5b913f1fb0df2909

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp310-cp310-manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp310-cp310-manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 3c9807b91490edee9384918a77b509bc78794c041ef94ae38b4bbd3c648fd2c4
MD5 c1459257347b227a17ccf6f97fd738ef
BLAKE2b-256 be2a38fc87834a58726f48fbb1e7c1275583c55af69546fc3c893300555c6448

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp310-cp310-manylinux_2_28_ppc64le.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp310-cp310-manylinux_2_28_ppc64le.whl
Algorithm Hash digest
SHA256 a088d6a833b9143a8d71dfe14e5f6039f191aaec60acbfd70a1b75bf4262f8c4
MD5 7e39585847399d4fd70205315620d35c
BLAKE2b-256 0bfa8f6dce67f6f65b76a83c1c9b49913f2fd9f4b65e4ff4528db5547d3671ff

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 879a2faa5cb9344f1d01addc0b526736f62337611907a804523eef09614dbb59
MD5 56cf2d6dabdc14bff4233aa3d7d4cfe5
BLAKE2b-256 3ed0a4f5a04966404e521cbb45d46e7cdb136d1bbec24a307625e29ebd32d1fe

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 93a79ebcce1fc31bf51865a053aa478a98a6fe2461ad416ae6393792b61cd155
MD5 b2e30d5e7ef01ebcaf9cf97bd2006138
BLAKE2b-256 1ee84a79eb9c10e41b5977982d0c5e5af9d2f1080592184cc5f4c77f504df61a

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e9da925ff4d1461865ca7ad76ff9b1d24cbbaefa5cb291875615e515b190271a
MD5 741c7bb8f2a5e4061d141504dd426a4b
BLAKE2b-256 871bb72b9bdfd45067c4a45dd6061062bcd7faa214f5f319a435e4759d888e88

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp310-cp310-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp310-cp310-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 df07702ebd2d217b736e659a1b87585858d8cce607b78ebd6a0ed1c35a0ed36b
MD5 67e7d1bb6fa108cd619018c3b6ace6f3
BLAKE2b-256 53a8f2b2a687929a6bd566554fd7b739da9da89a320ba29f00416a1a406d80a9

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 bb20c7a00f3650191370a2553fb500a89df7c071bc696747cfb2f5ef5a1fe7dc
MD5 c5ca2eb067cc05aead26b3d4953ddbcf
BLAKE2b-256 054953b296da2442c81dbd24e5d8e9d31e776478571687c212787b4bef680ac2

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp39-cp39-manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp39-cp39-manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 9b96e9b061aa691c4c5ac362ee405f306773630fdfd0de3bc62a5a540c6f1866
MD5 53465e096d4b4dda85531d7cfe593e1b
BLAKE2b-256 ff48179972a339b9b7d703c86db60783f2024ed47c22a75a497447768eda9a79

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp39-cp39-manylinux_2_28_ppc64le.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp39-cp39-manylinux_2_28_ppc64le.whl
Algorithm Hash digest
SHA256 1afc535726a50573b4cce1a3b58ebc725a72254c18e5635f7c01de0aa793d242
MD5 145fac0e66f66b57e3ac647b19666f52
BLAKE2b-256 7b1f27ef6bd1513d0755a75f31d885783a72515daaf856d9475b5914dee9cecb

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f0b9aa7d20b0ce9aab1dc594322f076c2a8bc7e778ae9029720b5e98536951f1
MD5 6097181f8896278240ef1067d6ff30cb
BLAKE2b-256 17ca93cac52262c09f3825aef9e4f357d5b611c252343cc28c8903f38d2ec50d

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 36a4a2defd388ded390db0a82cfadf5430d514b08bbe08beec06b727d13ea241
MD5 c6b2a2a6999a0222fa5d2f3899b4aa5d
BLAKE2b-256 b7c8b5a742dca85bd51ec2b5594a70b28581cccfe1745d4ca7073d0c1f087bad

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ed3f702bb807b53f69d38c04d299ad1df25f24d6c354be5ca2f1661153fb1741
MD5 3f366f2662b0d381ccc71ac1ccd03e71
BLAKE2b-256 696587239526ceff38eb7ac493737e069171b26beda231a824ce0b6171658448

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp39-cp39-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp39-cp39-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 e8dec58fef1fcc50250ce0ba7d5402db1c7941a4a3706dd56363ddaa36048802
MD5 2788181126693189f03a0cbfa73d8598
BLAKE2b-256 a7e3de6a95151f24e196151939a8403a34beb11bcfadeb090a8212dc2ccfc2ba

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 978614b9746151ea7a7d13088d4fc9b1eeb1990d4032bddcaad935602bf91b80
MD5 d44a4e64559c5ad3e1e633481074df5d
BLAKE2b-256 986c6ded46e494b014589337a0a713b48ba5084594cff17073e5498538bce424

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp38-cp38-manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp38-cp38-manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 f031a704dc1d5600f6b36caf635b31a8004074bdfce8d218f203fb0ba1e12df7
MD5 793e454b5703f6557906cc71dd684da3
BLAKE2b-256 d8e29ed6f82ca5dbcad3aaa4663a54fa3861b035c761442b1701fe586aa80457

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp38-cp38-manylinux_2_28_ppc64le.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp38-cp38-manylinux_2_28_ppc64le.whl
Algorithm Hash digest
SHA256 aa94556066f3490d091b16cdf562766c4e3c5755f9e17979533f9fbf81d12019
MD5 e3a867905b4cef6f4326a1afbaeaaca7
BLAKE2b-256 f1a946ae375244ceffaee94cc9b7b9769c7fa0a746e0e0ce92d3b45643d76f2f

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4348c181095dd3e805da9153514843517f660f8e0c1098964a6309e924483a81
MD5 19655d685076658093504236be838420
BLAKE2b-256 4ccb240902ee81897832b2fce39d5e3bca079cedd3a2912c5e682aa6b2865aeb

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 7ac7d46eeb1e65ab4dc778a6dd9708c31fa4c9046bdaa126ecfac9f42b34ce55
MD5 1cd5ea9d5b41906a93e1318d421ad6c0
BLAKE2b-256 235ad6c0b8a43f67a01f66a694282b37483a268f0832ad6925a74a3ba2379b33

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 945a02feb8ad2aec24094430d9906d9e219eca0c0095517f24c477fe413ce045
MD5 a26f0c3095d8696fc576ffbb7d2082fd
BLAKE2b-256 73abdfc6f514376327cd932b1e59da4432fdc8389f7c77b831349795535c9ae2

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp37-cp37m-manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp37-cp37m-manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 f9d61cbfbc80b126a1ea59b9ce49a7cf16a2fd8c4a5f32092c95f7a05fed2dc5
MD5 72428f83bb16f71ba900e1452e53060d
BLAKE2b-256 c62868524c8cbe547a11e3ac00261a38be0fcabfa302797c68c49e3d0a35398b

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp37-cp37m-manylinux_2_28_ppc64le.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp37-cp37m-manylinux_2_28_ppc64le.whl
Algorithm Hash digest
SHA256 f77ba1463778bb842b9454e81aeeaab0be199d32deef1671fffc8cc6c258ab4d
MD5 b0905e72807e52246632713631f577ad
BLAKE2b-256 6d26b8d5e250d515911fa8dc3a956b2ff52f765ac55f5b03d9a4abb56433b3be

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp37-cp37m-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp37-cp37m-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c4030bf8a5cf6ca878453d29d6c4b506387a1f9db73ee4c40a42821e4e7cc099
MD5 af9e9fe2d5f1dbce808919f54f28ee0f
BLAKE2b-256 d334c82de3ab49441c2460bcfdb885b9d36cc7ba24efccdf68718a85b413ff76

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 2af40f0bc4ec39210b8d00ff088383dbb4b8752d47bd5c91628787f27fc8a773
MD5 672ed4796c5476a4df055f836c7c9f6d
BLAKE2b-256 f8c9e26d9fb797076c804b9e6d2df067a6dc27753445b3945928e1aa648137e5

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp36-cp36m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp36-cp36m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 00f2c817e7b0a46eceb471edccce3fa4bf25a1ef0a5bb78d3b1cc80ff9477a9c
MD5 cbb97dc9f9700876709b01a6c2b0de4c
BLAKE2b-256 b13b60366c28c448fb06ab755cccb18ebf778f90cb0989950e5bcb96665e2e5a

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp36-cp36m-manylinux_2_28_s390x.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp36-cp36m-manylinux_2_28_s390x.whl
Algorithm Hash digest
SHA256 142a2dd97ae3705aad91209dadc1bd49f7f2313558030bed624d68557bb43d5e
MD5 51696462cc53cee974e6f0208ea9242d
BLAKE2b-256 f806bd3c5955111de1e52a920d4125ebb987ced6117f6eca9caa499f1a691049

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp36-cp36m-manylinux_2_28_ppc64le.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp36-cp36m-manylinux_2_28_ppc64le.whl
Algorithm Hash digest
SHA256 7b3de1f3cd4090af73bd2fcb6f0e6658ad4a8f45e0346f2245351ec79f55d259
MD5 d64e6e42d5d7f887782d7e07baa3a65c
BLAKE2b-256 7bd1b3afd105e48115c481981f4840820ff5e075cf45d7381d03aae12dff5509

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp36-cp36m-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp36-cp36m-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ebf768ccfa83abbcdb85a367aecd61dfd27a0a3143b9b736d2aaceb2a49e8660
MD5 548f191e635711da4990a7bb409e2f34
BLAKE2b-256 c656dbc31ac80be5ed46e1fed1d7c9259e7a3c06f247548cc29e38fda15bee84

See more details on using hashes here.

File details

Details for the file BabitMF-0.0.11-cp36-cp36m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for BabitMF-0.0.11-cp36-cp36m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a6a46078a7b2fe859549e5514a16b1e980d483a460bc361449e7c375de78df9b
MD5 256dcc0c8a2e95c1d121c406aa1fda18
BLAKE2b-256 ceb7144f02b35f072c138a4f9af344829ae34f80065f1825b0440432fb3c2904

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page