Skip to main content

The tool is designed to mine behavior patterns

Project description

BahaviorTool是一个Python包,提供了CombinePattern、ContinuePattern和SequencePattern三个类的实现行为模式挖掘。

安装

你可以使用pip安装BahaviorPattern:

pip install BahaviorPattern

使用

在你的Python代码中引入类,例如:

from BahaviorPattern import CombinePattern, ContinuePattern, SequencePattern

#--------------------------------- 组合行为模式挖掘 ---------------------------------#
use_behavior = []
del_behavior = []
# 创建实例
behavior = CombinePattern(data=data, 
                          use_behavior=use_behavior, 
                          del_behavior=del_behavior, 
                          min_support=0.1, 
                          min_confidence=0.5, 
                          min_length=3, 
                          max_length=7, 
                          sep='@') 
# 运行模型,返回pattern结果和使用的行为列表
combine, combine_use_behavior = behavior.run() 
# 筛选lift符合要求的pattern
combine_result = combine[combine['lift'] > 6] 


#--------------------------------- 连续行为模式挖掘 ---------------------------------#
use_behavior = []
del_behavior = []
# 创建实例
behavior = ContinuePattern(data=data, 
                           use_behavior=use_behavior, 
                           del_behavior=del_behavior, 
                           min_support=0.1, 
                           min_length=3, 
                           max_length=6, 
                           sep='@') 
# 运行模型,返回pattern结果和使用的行为列表
continues, continue_use_behavior = behavior.run() 
# 筛选lift符合要求的pattern
continues_result = continues[continues['lift'] > 6] 


#--------------------------------- 序列行为模式挖掘 ---------------------------------#
use_behavior = []
del_behavior = []
# 创建实例
behavior = SequencePattern(data=data, 
                           use_behavior=use_behavior, 
                           del_behavior=del_behavior, 
                           min_support=0.1,
                           min_length=3, 
                           max_length=7, 
                           sep='@') 
# 运行模型,返回pattern结果和使用的行为列表
sequence, seq_use_behavior = behavior.run() 
# 筛选lift符合要求的pattern
sequence_result = sequence[sequence['lift'] > 6] 

依赖

BahaviorPattern依赖以下Python库:

  • numpy
  • pandas
  • efficient_apriori
  • tqdm
  • prefixspan

完整的依赖列表可以在setup.py中找到。

贡献

如果你发现任何bugs,请提交Issue或Pull Request进行更正

作者

MyPackage由Chen Chen编写和维护。

致谢

感谢以下Python包的开发者:

  • numpy
  • pandas
  • efficient_apriori
  • tqdm
  • prefixspan

这些开发者对该项目发展做出了重要贡献。

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

BahaviorPattern-0.0.2.tar.gz (1.9 kB view details)

Uploaded Source

File details

Details for the file BahaviorPattern-0.0.2.tar.gz.

File metadata

  • Download URL: BahaviorPattern-0.0.2.tar.gz
  • Upload date:
  • Size: 1.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for BahaviorPattern-0.0.2.tar.gz
Algorithm Hash digest
SHA256 10747d55ec7fda0691c2d9d1a444a3d3a624881e2304d6be3bc8a60ef6376202
MD5 0dc901c3b1f3738b6dc3c454bede5873
BLAKE2b-256 4bb810550fff940dff1ee130952dacc592fad99f6ff26556b620e4eb7245458e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page