Bayesian inference of algorithm performance using permutation models.
Project description
BayesPermus
Bayesian inference of algorithm performance using permutation models.
Installation
pip install BayesPermus
Usage
- Prepare permutation data:
permus = np.array([[1,2,3], [1,3,2]])
- Obtain the marginal probabilities:
from BayesPermus.models.BradleyTerry import BradleyTerry
# BT Dirichlet hyper-priors
dirichlet_alpha_bt = [1, 1, 1]
# Create Bayesian inference model
bradleyTerry = BradleyTerry(dirichlet_alpha_bt, num_samples=1000)
# Calculate the marginal probabilities
probs = bradleyTerry.calculate_top_ranking_probs(permus)
Additional available models
- Bradley-Terry:
from BayesPermus.models.BradleyTerry import BradleyTerry
- Plackett-Luce:
from BayesPermus.models.PlackettLuce import PlackettLuceDirichlet
from BayesPermus.models.PlackettLuce import PlackettLuceGamma
- Mallows Model:
from BayesPermus.models.MallowsModel import MallowsModel
Additional available marginals
- Probability of an algorithm to be in the first position:
model.calculate_top_ranking_probs(...)
. - Probability of an algorithm to outperform another:
model.calculate_better_than_probs(...)
. - Probability of an algorithm to be in the top-k ranking:
model.calculate_top_k_probs(...)
.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
BayesPermus-0.0.2.tar.gz
(6.7 kB
view details)
Built Distribution
File details
Details for the file BayesPermus-0.0.2.tar.gz
.
File metadata
- Download URL: BayesPermus-0.0.2.tar.gz
- Upload date:
- Size: 6.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9d951329266d860e8069eb3a64d22116715b95ead88921a6064de0eb3db8318d |
|
MD5 | bb3f5bf90bf9280411df6e7aacab6f69 |
|
BLAKE2b-256 | 9590219b62cc835144abab1e08b9d8ee0cf790483ab41bc3ffa561b3de165a33 |
File details
Details for the file BayesPermus-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: BayesPermus-0.0.2-py3-none-any.whl
- Upload date:
- Size: 8.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 87260f1c84a0d6e2577a4f8f3887182a22343fbaa0bf5c03bc6ae166b6087c06 |
|
MD5 | f7e5508eca3132edc0edf3abee76594d |
|
BLAKE2b-256 | b3a7639d0f9dadece2deacea2040719210372f26a311c751b6d5c888e821c291 |