Skip to main content

Bayesian inference of algorithm performance using permutation models.

Project description

BayesPermus

Bayesian inference of algorithm performance using permutation models.

Installation

pip install BayesPermus

Usage

  1. Prepare permutation data:
permus = np.array([[1,2,3], [1,3,2]])
  1. Obtain the marginal probabilities:
from BayesPermus.models.BradleyTerry import BradleyTerry

# BT Dirichlet hyper-priors
dirichlet_alpha_bt = [1, 1, 1]

# Create Bayesian inference model
bradleyTerry = BradleyTerry(dirichlet_alpha_bt, num_samples=1000)

# Calculate the marginal probabilities
probs = bradleyTerry.calculate_top_ranking_probs(permus)

Additional available models

  • Bradley-Terry:
from BayesPermus.models.BradleyTerry import BradleyTerry
  • Plackett-Luce:
from BayesPermus.models.PlackettLuce import PlackettLuceDirichlet
from BayesPermus.models.PlackettLuce import PlackettLuceGamma
  • Mallows Model:
from BayesPermus.models.MallowsModel import MallowsModel

Additional available marginals

  • Probability of an algorithm to be in the first position: model.calculate_top_ranking_probs(...).
  • Probability of an algorithm to outperform another: model.calculate_better_than_probs(...).
  • Probability of an algorithm to be in the top-k ranking: model.calculate_top_k_probs(...).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

BayesPermus-0.0.2.tar.gz (6.7 kB view details)

Uploaded Source

Built Distribution

BayesPermus-0.0.2-py3-none-any.whl (8.1 kB view details)

Uploaded Python 3

File details

Details for the file BayesPermus-0.0.2.tar.gz.

File metadata

  • Download URL: BayesPermus-0.0.2.tar.gz
  • Upload date:
  • Size: 6.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.10

File hashes

Hashes for BayesPermus-0.0.2.tar.gz
Algorithm Hash digest
SHA256 9d951329266d860e8069eb3a64d22116715b95ead88921a6064de0eb3db8318d
MD5 bb3f5bf90bf9280411df6e7aacab6f69
BLAKE2b-256 9590219b62cc835144abab1e08b9d8ee0cf790483ab41bc3ffa561b3de165a33

See more details on using hashes here.

File details

Details for the file BayesPermus-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: BayesPermus-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 8.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.10

File hashes

Hashes for BayesPermus-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 87260f1c84a0d6e2577a4f8f3887182a22343fbaa0bf5c03bc6ae166b6087c06
MD5 f7e5508eca3132edc0edf3abee76594d
BLAKE2b-256 b3a7639d0f9dadece2deacea2040719210372f26a311c751b6d5c888e821c291

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page