Bayesian inference of algorithm performance using permutation models.
Project description
BayesPermus
Bayesian inference of algorithm performance using permutation models.
Installation
pip install BayesPermus
Usage
- Prepare permutation data:
permus = np.array([[1,2,3], [1,3,2]])
- Obtain the marginal probabilities:
from BayesPermus.models.BradleyTerry import BradleyTerry
# BT Dirichlet hyper-priors
dirichlet_alpha_bt = [1, 1, 1]
# Create Bayesian inference model
bradleyTerry = BradleyTerry(dirichlet_alpha_bt, num_samples=1000)
# Calculate the marginal probabilities
probs = bradleyTerry.calculate_top_ranking_probs(permus)
Additional available models
- Bradley-Terry:
from BayesPermus.models.BradleyTerry import BradleyTerry
- Plackett-Luce:
from BayesPermus.models.PlackettLuce import PlackettLuceDirichlet
from BayesPermus.models.PlackettLuce import PlackettLuceGamma
- Mallows Model:
from BayesPermus.models.MallowsModel import MallowsModel
Additional available marginals
- Probability of an algorithm to be in the first position:
model.calculate_top_ranking_probs(...)
. - Probability of an algorithm to outperform another:
model.calculate_better_than_probs(...)
. - Probability of an algorithm to be in the top-k ranking:
model.calculate_top_k_probs(...)
.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
BayesPermus-0.0.3.tar.gz
(6.8 kB
view details)
Built Distribution
File details
Details for the file BayesPermus-0.0.3.tar.gz
.
File metadata
- Download URL: BayesPermus-0.0.3.tar.gz
- Upload date:
- Size: 6.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1481cb585b27cea7e7e9ad7f9b46cf82efea76b5e6b4ceec5071849cccdcff81 |
|
MD5 | aed4185c3ba7c3f26d755ba4cb00e44a |
|
BLAKE2b-256 | 3c35626ce8112738f008e5b47623035204f571d0bdeb1ddbf31b58016ff60f71 |
File details
Details for the file BayesPermus-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: BayesPermus-0.0.3-py3-none-any.whl
- Upload date:
- Size: 8.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 431e3c17f0de536460295c2f70c6c06777272424c53786819d3aaec0ee96a7b6 |
|
MD5 | a1294f1c2036bbd038284a3c69da7852 |
|
BLAKE2b-256 | c4d299f34b862eba277335a3334e293fa8c6a5c1f00bfc367b6ef390aeed9eb9 |