Skip to main content

Bayesian inference of algorithm performance using permutation models.

Project description

BayesPermus

Bayesian inference of algorithm performance using permutation models.

Installation

pip install BayesPermus

Usage

  1. Prepare permutation data:
permus = np.array([[1,2,3], [1,3,2]])
  1. Obtain the marginal probabilities:
from BayesPermus.models.BradleyTerry import BradleyTerry

# BT Dirichlet hyper-priors
dirichlet_alpha_bt = [1, 1, 1]

# Create Bayesian inference model
bradleyTerry = BradleyTerry(dirichlet_alpha_bt, num_samples=1000)

# Calculate the marginal probabilities
probs = bradleyTerry.calculate_top_ranking_probs(permus)

Additional available models

  • Bradley-Terry:
from BayesPermus.models.BradleyTerry import BradleyTerry
  • Plackett-Luce:
from BayesPermus.models.PlackettLuce import PlackettLuceDirichlet
from BayesPermus.models.PlackettLuce import PlackettLuceGamma
  • Mallows Model:
from BayesPermus.models.MallowsModel import MallowsModel

Additional available marginals

  • Probability of an algorithm to be in the first position: model.calculate_top_ranking_probs(...).
  • Probability of an algorithm to outperform another: model.calculate_better_than_probs(...).
  • Probability of an algorithm to be in the top-k ranking: model.calculate_top_k_probs(...).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

BayesPermus-0.0.4.tar.gz (7.6 kB view details)

Uploaded Source

Built Distribution

BayesPermus-0.0.4-py3-none-any.whl (9.8 kB view details)

Uploaded Python 3

File details

Details for the file BayesPermus-0.0.4.tar.gz.

File metadata

  • Download URL: BayesPermus-0.0.4.tar.gz
  • Upload date:
  • Size: 7.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.10

File hashes

Hashes for BayesPermus-0.0.4.tar.gz
Algorithm Hash digest
SHA256 60c5fcb4e825d82d17c37e08069782af76321871f3ae93ad02c4a304b2b615d9
MD5 87d8bc9da37d8f74a92c571312c14cf5
BLAKE2b-256 17c5b1b1840bd7e51e568584f071cbf0681da0ffafdefcc8164e901b62997245

See more details on using hashes here.

File details

Details for the file BayesPermus-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: BayesPermus-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 9.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.10

File hashes

Hashes for BayesPermus-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 35adee534fa294700da6d4a56fcaa35cfe7d8ced4e9346ca9d8e2c0248bc6a5f
MD5 64b3c869a0cbefebe1dd40d59621208c
BLAKE2b-256 7f6b403dc76a3eeae201fadfc80e0983b71815f7f9a591951a29e5ef947483de

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page