Skip to main content

A Bayesian global optimization package for material design

Project description

[![](https://img.shields.io/badge/PyPI-caobin-blue)](https://pypi.org/project/Bgolearn/) # Python package - Bgolearn

![Screen Shot 2022-07-11 at 9 13 28 AM](https://user-images.githubusercontent.com/86995074/178176016-8a79db81-fcfb-4af0-9b1c-aa4e6a113b5e.png)

## 为材料设计而生! ## ( A Bayesian global optimization package for material design )Version 1, Jul, 2022

Reference paper : V. Picheny, T. Wagner, and D. Ginsbourger. “A Benchmark of Kriging-Based Infill Criteria for Noisy Optimization”. In: Structural and Multidisciplinary Optimization 48.3 (Sept. 2013), pp. 607–626. issn: 1615-1488.

Written using Python, which is suitable for operating systems, e.g., Windows/Linux/MAC OS etc.

## Content Bgolearn guides subsequent material design based on existed experimental data. Which includes: 1.Expected Improvement algorithm, 2.Expected improvement with “plugin”,3.Augmented Expected Improvement,4.Expected Quantile Improvement,5.Reinterpolation Expected Improvement, 6.Upper confidence bound,7.Probability of Improvement,8.Predictive Entropy Search,9.Knowledge Gradient, a total of nine Utility Functions. Predictive Entropy Search,Knowledge Gradient are implemented based on Monte Carlo simulation.(贝叶斯优化设计,根据已有的实验数据对后续材料设计作出指导,本算法包共包括:期望最大化算法,期望最大化算法改进(考虑数据噪声),上确界方法,期望提升方法,熵搜索,知识梯度方法等在内的共计9种贝叶斯采样方法。其中熵搜索和知识梯度方法基于蒙特卡洛实现)

## Installing / 安装 pip install Bgolearn

## Updating / 更新 pip install –upgrade Bgolearn

## Running / 运行 ### Ref.https://github.com/Bin-Cao/Bgolearn/blob/main/Template/demo.ipynb

## Utility Function 效用函数: + 1:Expected Improvement + 2:Expected improvement with “plugin” + 3:Augmented Expected Improvement + 4:Expected Quantile Improvement + 5:Reinterpolation Expected Improvement + 6:Upper confidence bound + 7:Probability of Improvement + 8:Predictive Entropy Search + 9:Knowledge Gradient

## About / 更多 Maintained by Bin Cao. Please feel free to open issues in the Github or contact Bin Cao (bcao@shu.edu.cn) in case of any problems/comments/suggestions in using the code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Bgolearn-1.2.0.tar.gz (11.7 kB view details)

Uploaded Source

Built Distribution

Bgolearn-1.2.0-py3-none-any.whl (15.0 kB view details)

Uploaded Python 3

File details

Details for the file Bgolearn-1.2.0.tar.gz.

File metadata

  • Download URL: Bgolearn-1.2.0.tar.gz
  • Upload date:
  • Size: 11.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.7

File hashes

Hashes for Bgolearn-1.2.0.tar.gz
Algorithm Hash digest
SHA256 6f02f3a106a103162b919a17b6d1c6d59c6a9d676b5e6114535d19dc84e8489c
MD5 6f668954e33887c52c03c2570c450fd8
BLAKE2b-256 781e1dd57366c0c7bf156df19fb6065769e724e972806e45916cb1c9509c9abd

See more details on using hashes here.

File details

Details for the file Bgolearn-1.2.0-py3-none-any.whl.

File metadata

  • Download URL: Bgolearn-1.2.0-py3-none-any.whl
  • Upload date:
  • Size: 15.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.7

File hashes

Hashes for Bgolearn-1.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d5631e67067bed826430a5c1932d75d350fa314145d6833df03cbedd5918516e
MD5 c723761662a8971038286e59d2183330
BLAKE2b-256 10b5e0633e9c7732346a3896848bf3d8acd3a73544cd78ef6e3210bc01be603a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page