Skip to main content

A Bayesian global optimization package for material design

Project description

[![](https://img.shields.io/badge/PyPI-caobin-blue)](https://pypi.org/project/Bgolearn/) # Python package - Bgolearn

![Screen Shot 2022-07-11 at 9 13 28 AM](https://user-images.githubusercontent.com/86995074/178176016-8a79db81-fcfb-4af0-9b1c-aa4e6a113b5e.png)

## 为材料设计而生! ## ( A Bayesian global optimization package for material design )Version 1, Jul, 2022

Reference paper : V. Picheny, T. Wagner, and D. Ginsbourger. “A Benchmark of Kriging-Based Infill Criteria for Noisy Optimization”. In: Structural and Multidisciplinary Optimization 48.3 (Sept. 2013), pp. 607–626. issn: 1615-1488.

Written using Python, which is suitable for operating systems, e.g., Windows/Linux/MAC OS etc.

## Content Bgolearn guides subsequent material design based on existed experimental data. Which includes: 1.Expected Improvement algorithm, 2.Expected improvement with “plugin”,3.Augmented Expected Improvement,4.Expected Quantile Improvement,5.Reinterpolation Expected Improvement, 6.Upper confidence bound,7.Probability of Improvement,8.Predictive Entropy Search,9.Knowledge Gradient, a total of nine Utility Functions. Predictive Entropy Search,Knowledge Gradient are implemented based on Monte Carlo simulation.(贝叶斯优化设计,根据已有的实验数据对后续材料设计作出指导,本算法包共包括:期望最大化算法,期望最大化算法改进(考虑数据噪声),上确界方法,期望提升方法,熵搜索,知识梯度方法等在内的共计9种贝叶斯采样方法。其中熵搜索和知识梯度方法基于蒙特卡洛实现)

## Installing / 安装 pip install Bgolearn

## Updating / 更新 pip install –upgrade Bgolearn

## About / 更多 Maintained by Bin Cao. Please feel free to open issues in the Github or contact Bin Cao (bcao@shu.edu.cn) in case of any problems/comments/suggestions in using the code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Bgolearn-2.0.0.tar.gz (13.5 kB view details)

Uploaded Source

Built Distribution

Bgolearn-2.0.0-py3-none-any.whl (17.2 kB view details)

Uploaded Python 3

File details

Details for the file Bgolearn-2.0.0.tar.gz.

File metadata

  • Download URL: Bgolearn-2.0.0.tar.gz
  • Upload date:
  • Size: 13.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for Bgolearn-2.0.0.tar.gz
Algorithm Hash digest
SHA256 ea258cd4c1d8dce8de024b70bc964ade470bc81174643da997e54735e348c1d7
MD5 9a9705ddae2e839781ab641c9b38f16f
BLAKE2b-256 4bd894957f205c476e60d83583a96ffdd1df2c0d277011bceb5a123eedcac0ea

See more details on using hashes here.

File details

Details for the file Bgolearn-2.0.0-py3-none-any.whl.

File metadata

  • Download URL: Bgolearn-2.0.0-py3-none-any.whl
  • Upload date:
  • Size: 17.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for Bgolearn-2.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b64c0b2e5993fd7101c8eb31bc783a403eee0951991e46d254aadca748dfd2b7
MD5 443817863ae8885d921d961c5d097996
BLAKE2b-256 01df225fdd9bfcf431531f1c7bea2dfc3e6194a557a5c6677e6ede858850488c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page