Skip to main content

A Bayesian global optimization package for material design

Project description

[![](https://img.shields.io/badge/PyPI-caobin-blue)](https://pypi.org/project/Bgolearn/) # Python package - Bgolearn

![Screen Shot 2022-07-11 at 9 13 28 AM](https://user-images.githubusercontent.com/86995074/178176016-8a79db81-fcfb-4af0-9b1c-aa4e6a113b5e.png)

## 为材料设计而生! ## ( A Bayesian global optimization package for material design )Version 1, Jul, 2022

Reference paper : V. Picheny, T. Wagner, and D. Ginsbourger. “A Benchmark of Kriging-Based Infill Criteria for Noisy Optimization”. In: Structural and Multidisciplinary Optimization 48.3 (Sept. 2013), pp. 607–626. issn: 1615-1488.

Written using Python, which is suitable for operating systems, e.g., Windows/Linux/MAC OS etc.

## Content Bgolearn guides subsequent material design based on existed experimental data. Which includes: 1.Expected Improvement algorithm, 2.Expected improvement with “plugin”,3.Augmented Expected Improvement,4.Expected Quantile Improvement,5.Reinterpolation Expected Improvement, 6.Upper confidence bound,7.Probability of Improvement,8.Predictive Entropy Search,9.Knowledge Gradient, a total of nine Utility Functions. Predictive Entropy Search,Knowledge Gradient are implemented based on Monte Carlo simulation.(贝叶斯优化设计,根据已有的实验数据对后续材料设计作出指导,本算法包共包括:期望最大化算法,期望最大化算法改进(考虑数据噪声),上确界方法,期望提升方法,熵搜索,知识梯度方法等在内的共计9种贝叶斯采样方法。其中熵搜索和知识梯度方法基于蒙特卡洛实现)

## Installing / 安装 pip install Bgolearn

## Updating / 更新 pip install –upgrade Bgolearn

## About / 更多 Maintained by Bin Cao. Please feel free to open issues in the Github or contact Bin Cao (bcao@shu.edu.cn) in case of any problems/comments/suggestions in using the code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Bgolearn-2.2.2.tar.gz (14.7 kB view details)

Uploaded Source

Built Distribution

Bgolearn-2.2.2-py3-none-any.whl (18.5 kB view details)

Uploaded Python 3

File details

Details for the file Bgolearn-2.2.2.tar.gz.

File metadata

  • Download URL: Bgolearn-2.2.2.tar.gz
  • Upload date:
  • Size: 14.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for Bgolearn-2.2.2.tar.gz
Algorithm Hash digest
SHA256 95be3d2a5a95a69d0f26c44f8e341516f9b2dd8ebb7e9c858672e1dc2b783942
MD5 5b29c17c3c4562a0a682c749037135e7
BLAKE2b-256 c7c9ab9792d809b703201b5a45ba1a24a9edafa95a06841f654e51b8a6126868

See more details on using hashes here.

File details

Details for the file Bgolearn-2.2.2-py3-none-any.whl.

File metadata

  • Download URL: Bgolearn-2.2.2-py3-none-any.whl
  • Upload date:
  • Size: 18.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for Bgolearn-2.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 f16163fc0a741b05f20771e0891da632e762f1c461af9b585d32683408b4c8c2
MD5 71bc11b339d161c893be5989369dafa6
BLAKE2b-256 f40a7b6a5a5c325c10e5a911f7b4dbd5c5f407e0510f4e27b4bc68b80dc8f9ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page